Advertisement

The AFLOW Fleet for Materials Discovery

  • Cormac Toher
  • Corey Oses
  • David Hicks
  • Eric Gossett
  • Frisco Rose
  • Pinku Nath
  • Demet Usanmaz
  • Denise C. Ford
  • Eric Perim
  • Camilo E. Calderon
  • Jose J. Plata
  • Yoav Lederer
  • Michal Jahnátek
  • Wahyu Setyawan
  • Shidong Wang
  • Junkai Xue
  • Kevin Rasch
  • Roman V. Chepulskii
  • Richard H. Taylor
  • Geena Gomez
  • Harvey Shi
  • Andrew R. Supka
  • Rabih Al Rahal Al Orabi
  • Priya Gopal
  • Frank T. Cerasoli
  • Laalitha Liyanage
  • Haihang Wang
  • Ilaria Siloi
  • Luis A. Agapito
  • Chandramouli Nyshadham
  • Gus L. W Hart
  • Jesús Carrete
  • Fleur Legrain
  • Natalio Mingo
  • Eva Zurek
  • Olexandr Isayev
  • Alexander Tropsha
  • Stefano Sanvito
  • Robert M. Hanson
  • Ichiro Takeuchi
  • Michael J. Mehl
  • Aleksey N. Kolmogorov
  • Kesong Yang
  • Pino D’Amico
  • Arrigo Calzolari
  • Marcio Costa
  • Riccardo De Gennaro
  • Marco Buongiorno Nardelli
  • Marco Fornari
  • Ohad Levy
  • Stefano Curtarolo
Living reference work entry

Abstract

The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data-driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first-principles calculations and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermomechanical properties, and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.8 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.

Notes

Acknowledgements

The authors acknowledge support from DOD-ONR (N00014-13-1-0030, N00014-13-1-0635, N00014-17-1-2090, N00014-16-1-2781, N00014-15-1-2583, N00014-15-1-2266), DOE (DE-AC02-05CH11231, specifically BES Grant # EDCBEE), and the Duke University Center for Materials Genomics. SC acknowledges support by the Alexander von Humboldt-Foundation – Max Planck Society (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany). CO acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGF-1106401. AFLOW calculations were performed at the Duke University Center for Materials Genomics and at the Fulton Supercomputer Lab – Brigham Young University. The authors thank Amir Natan, Matthias Scheffler, Luca Ghiringhelli, Kenneth Vecchio, Don Brenner, and Jon-Paul Maria for helpful discussions.

References

  1. Agapito LA, Ferretti A, Calzolari A, Curtarolo S, Buongiorno Nardelli M (2013) Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Phys Rev B 88:165127ADSCrossRefGoogle Scholar
  2. Agapito LA, Curtarolo S, Buongiorno Nardelli M (2015) Reformulation of DFT + U as a pseudohybrid Hubbard density functional for accelerated materials discovery. Phys Rev X 5:011006Google Scholar
  3. Agapito LA, Fornari M, Ceresoli D, Ferretti A, Curtarolo S, Buongiorno Nardelli M (2016a) Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Phys Rev B 93:125137ADSCrossRefGoogle Scholar
  4. Agapito LA, Ismail-Beigi S, Curtarolo S, Fornari M, Buongiorno Nardelli M (2016b) Accurate tight-binding Hamiltonian matrices from ab initio calculations: minimal basis sets. Phys Rev B 93:035104ADSCrossRefGoogle Scholar
  5. Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A (2015) Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17:31371–31396CrossRefGoogle Scholar
  6. Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  7. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Soft 22:469–483MathSciNetCrossRefGoogle Scholar
  8. Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263CrossRefGoogle Scholar
  9. Barzilai S, Toher C, Curtarolo S, Levy O (2017a) The effect of lattice stability determination on the computational phase diagrams of intermetallic alloys. J Alloys Compd 728:314–321CrossRefGoogle Scholar
  10. Barzilai S, Toher C, Curtarolo S, Levy O (2017b) Molybdenum-titanium phase diagram evaluated from ab initio calculations. Phys Rev Mater 1:023604CrossRefGoogle Scholar
  11. Bergerhoff G, Hundt R, Sievers R, Brown ID (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci 23:66–69CrossRefGoogle Scholar
  12. Blanco MA, Martín-Pendás A, Francisco E, Recio JM, Franco R (1996) Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J Mol Struct Theochem 368:245–255CrossRefGoogle Scholar
  13. Blanco MA, Francisco E, Luaña V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158:57–72ADSCrossRefGoogle Scholar
  14. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979ADSCrossRefGoogle Scholar
  15. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180:2175–2196ADSCrossRefGoogle Scholar
  16. Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart GLW, Buongiorno Nardelli M, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108 Part A:233–238CrossRefGoogle Scholar
  17. Curtarolo S, Setyawan W, Hart GLW, Jahnátek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012a) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226CrossRefGoogle Scholar
  18. Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno Nardelli M, Mingo N, Levy O (2012b) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58: 227–235CrossRefGoogle Scholar
  19. Curtarolo S, Hart GLW, Buongiorno Nardelli M, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201ADSCrossRefGoogle Scholar
  20. D’Amico P, Agapito LA, Catellani A, Ruini A, Curtarolo S, Fornari M, Buongiorno Nardelli M, Calzolari A (2016) Accurate ab initio tight-binding Hamiltonians: effective tools for electronic transport and optical spectroscopy from first principles. Phys Rev B 94:165166ADSCrossRefGoogle Scholar
  21. de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande CK, van der Zwaag S, Plata JJ, Toher C, Curtarolo S, Ceder G, Persson KA, Asta MD (2015) Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2:150009CrossRefGoogle Scholar
  22. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of Nickel oxide: an LSDA+ U study. Phys Rev B 57:1505–1509ADSCrossRefGoogle Scholar
  23. Elcombe MM, Pryor AW (1970) The lattice dynamics of calcium fluoride. J Phys C Solid State Phys 3:492ADSCrossRefGoogle Scholar
  24. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  25. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio Jr RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys Condens Matter 29:465901CrossRefGoogle Scholar
  26. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492CrossRefGoogle Scholar
  27. Gopal P, Fornari M, Curtarolo S, Agapito LA, Liyanage LSI, Buongiorno Nardelli M (2015) Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional. Phys Rev B 91:245202ADSCrossRefGoogle Scholar
  28. Gossett E, Toher C, Oses C, Isayev O, Legrain F, Rose F, Zurek E, Carrete J, Mingo N, Tropsha A, Curtarolo S (2018) AFLOW-ML: a RESTful API for machine-learning predictions of materials properties. Comput Mater Sci 152:134–145. Submitted arxiv.org/1711.10744CrossRefGoogle Scholar
  29. Hart GLW, Forcade RW (2008) Algorithm for generating derivative structures. Phys Rev B 77:224115ADSCrossRefGoogle Scholar
  30. Hicks D, Oses C, Gossett E, Gomez G, Taylor RH, Toher C, Mehl MJ, Levy O, Curtarolo S (2018) AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Cryst A 74:184–203MathSciNetCrossRefGoogle Scholar
  31. Isayev O, Fourches D, Muratov EN, Oses C, Rasch K, Tropsha A, Curtarolo S (2015) Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater 27:735–743CrossRefGoogle Scholar
  32. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting electronic properties of inorganic crystals. Nat Commun 8:15679ADSCrossRefGoogle Scholar
  33. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002ADSCrossRefGoogle Scholar
  34. Kaiser W, Spitzer WG, Kaiser RH, Howarth LE (1962) Infrared Properties of CaF2, SrF2, and BaF2. Phys Rev 127:1950–1954ADSCrossRefGoogle Scholar
  35. Karen VL, Hellenbrandt M (2002) Inorganic crystal structure database: new developments. Acta Cryst A58:c367CrossRefGoogle Scholar
  36. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186ADSCrossRefGoogle Scholar
  37. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561ADSCrossRefGoogle Scholar
  38. Landis DD, Hummelshøj JS, Nestorov S, Greeley J, Dułak M, Bligaard T, Nørskov JK, Jacobsen KW (2012) The computational materials repository. Comput Sci Eng 14:51–57CrossRefGoogle Scholar
  39. Lederer Y, Toher C, Vecchio KS, Curtarolo S (2018) The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater 159:354–383. Submitted arxiv.org/1711.03426CrossRefGoogle Scholar
  40. Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How chemical composition alone can predict vibrational free energies and entropies of solids. Chem Mater 29:6220–6227CrossRefGoogle Scholar
  41. Levy O, Hart GLW, Curtarolo S (2010a) Uncovering compounds by synergy of cluster expansion and high-throughput methods. J Am Chem Soc 132:4830–4833CrossRefGoogle Scholar
  42. Levy O, Hart GLW, Curtarolo S (2010b) Hafnium binary alloys from experiments and first principles. Acta Mater 58:2887–2897CrossRefGoogle Scholar
  43. Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2010c) The new face of Rhodium alloys: revealing ordered structures from first principles. J Am Chem Soc 132:833–837CrossRefGoogle Scholar
  44. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:R5467–R5470ADSCrossRefGoogle Scholar
  45. Maradudin AA, Montroll EW, Weiss GH, Ipatova IP (1971) Theory of lattice dynamics in the harmonic approximation. Academic Press, New YorkGoogle Scholar
  46. Mehl MJ, Hicks D, Toher C, Levy O, Hanson RM, Hart GLW, Curtarolo S (2017) The AFLOW library of crystallographic prototypes: part 1. Comput Mater Sci 136:S1–S828CrossRefGoogle Scholar
  47. Buongiorno Nardelli M, Cerasoli FT, Costa M, Curtarolo S, De Gennaro R, Fornari M, Liyanage L, Supka AR, Wang H (2017) PAOFLOW: a utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Comput Mater Sci 143:462–472CrossRefGoogle Scholar
  48. Nath P, Plata JJ, Usanmaz D, Al Rahal Al Orabi R, Fornari M, Buongiorno Nardelli M, Toher C, Curtarolo S (2016) High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Comput Mater Sci 125:82–91CrossRefGoogle Scholar
  49. Nath P, Plata JJ, Usanmaz D, Toher C, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity. Scr Mater 129:88–93CrossRefGoogle Scholar
  50. Nyshadham C, Oses C, Hansen JE, Takeuchi I, Curtarolo S, Hart GLW (2017) A computational high-throughput search for new ternary superalloys. Acta Mater 122:438–447CrossRefGoogle Scholar
  51. Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRefGoogle Scholar
  52. Oses C, Gossett E, Hicks D, Rose F, Mehl MJ, Perim E, Takeuchi I, Sanvito S, Scheffler M, Lederer Y, Levy O, Toher C, Curtarolo S (2018, in press) AFLOW-CHULL: Cloud-oriented platform for automonous phase stability analysis. J Chem Inf Model.  https://doi.org/10.1021/acs.jcim.8b00393
  53. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868ADSCrossRefGoogle Scholar
  54. Perim E, Lee D, Liu Y, Toher C, Gong P, Li Y, Simmons WN, Levy O, Vlassak JJ, Schroers J, Curtarolo S (2016) Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat Commun 7:12315ADSCrossRefGoogle Scholar
  55. Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230CrossRefGoogle Scholar
  56. Plata JJ, Nath P, Usanmaz D, Carrete J, Toher C, de Jong M, Asta MD, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW-AAPL automatic anharmonic phonon library. NPJ Comput Mater 3:45ADSCrossRefGoogle Scholar
  57. Poirier J-P (2000) Introduction to the physics of the earths interior, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  59. Rose F, Toher C, Gossett E, Oses C, Buongiorno Nardelli M, Fornari M, Curtarolo S (2017) AFLUX: the LUX materials search API for the AFLOW data repositories. Comput Mater Sci 137:362–370CrossRefGoogle Scholar
  60. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501–1509CrossRefGoogle Scholar
  61. Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey JMD, Curtarolo S (2017) Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv 3:e1602241ADSCrossRefGoogle Scholar
  62. Scheffler M, Draxl C (2014) Computer center of the Max-Planck society, garching. The NoMaD Repository. http://nomad-repository.eu
  63. Schmalzl K, Strauch D, Schober H (2003) Lattice-dynamical and ground-state properties of CaF2 studied by inelastic neutron scattering and density-functional methods. Phys Rev B 68:144301ADSCrossRefGoogle Scholar
  64. Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci 49:299–312CrossRefGoogle Scholar
  65. Supka AR, Lyons TE, Liyanage LSI, D’Amico P, Al Rahal Al Orabi R, Mahatara S, Gopal P, Toher C, Ceresoli D, Calzolari A, Curtarolo S, Buongiorno Nardelli M, Fornari M (2017) AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding Hamiltonians. Comput Mater Sci 136:76–84CrossRefGoogle Scholar
  66. Taylor RH, Rose F, Toher C, Levy O, Yang K, Buongiorno Nardelli M, Curtarolo S (2014) A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comput Mater Sci 93:178–192CrossRefGoogle Scholar
  67. Toher C, Plata JJ, Levy O, de Jong M, Asta MD, Buongiorno Nardelli M, Curtarolo S (2014) High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Phys Rev B 90:174107ADSCrossRefGoogle Scholar
  68. Toher C, Oses C, Plata JJ, Hicks D, Rose F, Levy O, de Jong M, Asta MD, Fornari M, Buongiorno Nardelli M, Curtarolo S (2017) Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Phys Rev Mater 1:015401CrossRefGoogle Scholar
  69. Yang K, Oses C, Curtarolo S (2016) Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem Mater 28:6484–6492CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cormac Toher
    • 1
    • 2
  • Corey Oses
    • 1
    • 2
  • David Hicks
    • 1
    • 2
  • Eric Gossett
    • 1
    • 2
  • Frisco Rose
    • 1
    • 2
  • Pinku Nath
    • 1
    • 2
  • Demet Usanmaz
    • 1
    • 2
  • Denise C. Ford
    • 1
    • 2
  • Eric Perim
    • 1
    • 2
  • Camilo E. Calderon
    • 1
    • 2
  • Jose J. Plata
    • 3
    • 4
    • 5
  • Yoav Lederer
    • 6
    • 7
    • 8
  • Michal Jahnátek
    • 1
    • 2
  • Wahyu Setyawan
    • 1
    • 2
  • Shidong Wang
    • 1
    • 2
  • Junkai Xue
    • 1
    • 2
  • Kevin Rasch
    • 1
    • 2
  • Roman V. Chepulskii
    • 1
    • 2
  • Richard H. Taylor
    • 1
    • 9
    • 10
    • 11
  • Geena Gomez
    • 1
    • 2
  • Harvey Shi
    • 1
    • 2
    • 12
  • Andrew R. Supka
    • 1
    • 3
    • 4
    • 13
    • 14
  • Rabih Al Rahal Al Orabi
    • 1
    • 5
    • 6
    • 15
    • 16
  • Priya Gopal
    • 1
    • 7
    • 17
  • Frank T. Cerasoli
    • 1
    • 8
    • 18
  • Laalitha Liyanage
    • 1
    • 8
    • 18
  • Haihang Wang
    • 1
    • 8
    • 18
  • Ilaria Siloi
    • 1
    • 8
    • 18
  • Luis A. Agapito
    • 1
    • 8
    • 18
  • Chandramouli Nyshadham
    • 1
    • 9
    • 19
  • Gus L. W Hart
    • 1
    • 9
    • 19
  • Jesús Carrete
    • 2
    • 20
  • Fleur Legrain
    • 1
    • 2
    • 21
    • 22
  • Natalio Mingo
    • 2
    • 3
    • 23
  • Eva Zurek
    • 2
    • 4
    • 24
  • Olexandr Isayev
    • 2
    • 5
    • 6
    • 25
    • 26
  • Alexander Tropsha
    • 2
    • 5
    • 6
    • 25
    • 26
  • Stefano Sanvito
    • 2
    • 7
    • 8
    • 27
    • 28
  • Robert M. Hanson
    • 2
    • 9
    • 29
  • Ichiro Takeuchi
    • 1
    • 3
    • 30
    • 31
  • Michael J. Mehl
    • 2
    • 3
    • 32
    • 33
  • Aleksey N. Kolmogorov
    • 3
    • 4
    • 5
    • 34
    • 35
  • Kesong Yang
    • 3
    • 6
    • 7
    • 36
    • 37
  • Pino D’Amico
    • 3
    • 8
    • 9
    • 38
    • 39
  • Arrigo Calzolari
    • 1
    • 2
    • 4
    • 40
    • 41
    • 42
  • Marcio Costa
    • 3
    • 4
    • 43
  • Riccardo De Gennaro
    • 4
    • 44
  • Marco Buongiorno Nardelli
    • 4
    • 5
    • 6
    • 45
    • 46
  • Marco Fornari
    • 4
    • 7
    • 8
    • 9
    • 47
    • 48
    • 49
  • Ohad Levy
    • 6
    • 7
    • 8
  • Stefano Curtarolo
    • 1
    • 2
    • 5
    • 50
    • 51
    • 52
  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  2. 2.Center for Materials GenomicsDuke UniversityDurhamUSA
  3. 3.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  4. 4.Center for Materials GenomicsDuke UniversityDurhamUSA
  5. 5.Departamento de Química FísicaUniversidad de SevillaSevillaSpain
  6. 6.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  7. 7.Center for Materials GenomicsDuke UniversityDurhamUSA
  8. 8.Department of PhysicsNRCNBeer-ShevaIsrael
  9. 9.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  10. 10.Center for Materials GenomicsDuke UniversityDurhamUSA
  11. 11.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  12. 12.Center for Materials GenomicsDuke UniversityDurhamUSA
  13. 13.Department of Physics and Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  14. 14.Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  15. 15.Department of Physics and Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  16. 16.Solvay, Design and Development of Functional Materials DepartmentAXEL’ONE Collaborative Platform – Innovative MaterialsSaint Fons CedexFrance
  17. 17.Department of Physics and Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  18. 18.Department of Physics and Department of ChemistryUniversity of North TexasDentonUSA
  19. 19.Department of Physics and AstronomyBrigham Young UniversityProvoUSA
  20. 20.Institute of Materials ChemistryTU WienViennaAustria
  21. 21.Universitè Grenoble AlpesGrenobleFrance
  22. 22.CEA, LITENGrenobleFrance
  23. 23.CEA, LITENGrenobleFrance
  24. 24.Department of ChemistryState University of New York at BuffaloBuffaloUSA
  25. 25.Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal ChemistryUNCChapel HillUSA
  26. 26.Eshelman School of PharmacyUniversity of North CarolinaChapel HillUSA
  27. 27.Center for Materials GenomicsDuke UniversityDurhamUSA
  28. 28.School of Physics, AMBER and CRANN InstituteTrinity CollegeDublinIreland
  29. 29.Department of ChemistrySt. Olaf CollegeNorthfieldUSA
  30. 30.Center for Nanophysics and Advanced MaterialsUniversity of MarylandCollege ParkUSA
  31. 31.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  32. 32.United States Naval AcademyAnnapolisUSA
  33. 33.Center for Materials GenomicsDuke UniversityDurhamUSA
  34. 34.Department of PhysicsBinghamton University, State University of New YorkBinghamtonUSA
  35. 35.Center for Materials GenomicsDuke UniversityDurhamUSA
  36. 36.Department of NanoEngineeringUniversity of California San DiegoLa JollaUSA
  37. 37.Center for Materials GenomicsDuke UniversityDurhamUSA
  38. 38.CNR-NANO Research Center S3ModenaItaly
  39. 39.Dipartimento di FisicaInformatica e Matematica, Universitá di Modena and Reggio EmiliaModenaItaly
  40. 40.Center for Materials GenomicsDuke UniversityDurhamUSA
  41. 41.CNR-NANO Research Center S3ModenaItaly
  42. 42.Department of Physics and Department of ChemistryUniversity of North TexasDentonUSA
  43. 43.Brazilian Nanotechnology National Laboratory (LNNano)CNPEMCampinasBrazil
  44. 44.Dipartimento di FisicaUniversit‘a di Roma Tor VergataRomaItaly
  45. 45.Center for Materials GenomicsDuke UniversityDurhamUSA
  46. 46.Department of Physics and Department of ChemistryUniversity of North TexasDentonUSA
  47. 47.Center for Materials GenomicsDuke UniversityDurhamUSA
  48. 48.Department of Physics and Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  49. 49.Science of Advanced Materials ProgramCentral Michigan UniversityMount PleasantUSA
  50. 50.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  51. 51.Center for Materials GenomicsDuke UniversityDurhamUSA
  52. 52.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin-DahlemGermany

Section editors and affiliations

  • Nicola Marzari
    • 1
  1. 1.Laboratory of theory and simulation of materialsSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations