Advertisement

Novel Enhanced Sampling Strategies for Transitions Between Ordered and Disordered Structures

  • Fabio Pietrucci
Living reference work entry

Abstract

At the atomic scale, condensed matter displays a fascinating variety of structural transformation processes. Examples include phase transitions between ordered and/or disordered structures (crystal to crystal, liquid to crystal, amorphous to crystal, etc.), isomerization of nanoclusters, chemical reactions, protein conformational changes, and many other phenomena. In all these cases, it is necessary to find suitable distance metrics and collective variables in order to analyze atomistic simulations of transformations as well as to accelerate them with enhanced sampling techniques, yielding mechanisms and free-energy landscapes. In this context, the present chapter illustrates approaches stemming from the idea of watching transformations of matter as modifications of the adjacency matrix formed by interatomic connections. The resulting tools have a general formulation and can therefore be applied to a range of different processes in physics, chemistry, and nanoscience.

References

  1. Abascal JL, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23):234505ADSCrossRefGoogle Scholar
  2. Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B, Loerting T (2016) Colloquium: water’s controversial glass transitions. Rev Mod Phys 88(1):011002ADSCrossRefGoogle Scholar
  3. Balan E, Pietrucci F, Gervais C, Blanchard M, Schott J, Gaillardet J (2016) First-principles study of boron speciation in calcite and aragonite. Geochim Cosmochim Acta 193:119–131ADSCrossRefGoogle Scholar
  4. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423.  https://doi.org/10.1103/RevModPhys.77.371
  5. Ballone P, Andreoni W, Car R, Parrinello M (1988) Equilibrium structures and finite temperature properties of silicon microclusters from abinitio molecular-dynamics calculations. Phys Rev Lett 60:271–274ADSCrossRefGoogle Scholar
  6. Bartels-Rausch T, Bergeron V, Cartwright JH, Escribano R, Finney JL, Grothe H, Gutiérrez PJ, Haapala J, Kuhs WF, Pettersson JB et al (2012) Ice structures, patterns, and processes: a view across the icefields. Rev Mod Phys 84(2):885ADSCrossRefGoogle Scholar
  7. Barthel S, Alexandrov EV, Proserpio DM, Smit B (2018) Distinguishing metal-organic frameworks. Cryst Growth Des 18(3):1738–1747.  https://doi.org/10.1021/acs.cgd.7b01663
  8. Baturin V, Lepeshkin S, Magnitskaya M, Matsko N, Uspenskii YA (2014) Structural and electronic properties of small silicon clusters. J Phys Conf Ser 510:012032. IOP PublishingGoogle Scholar
  9. Berteotti A, Cavalli A, Branduardi D, Gervasio FL, Recanatini M, Parrinello M (2008) Protein conformational transitions: the closure mechanism of a kinase explored by atomistic simulations. J Am Chem Soc 131(1):244–250CrossRefGoogle Scholar
  10. Best RB, Hummer G (2005) Reaction coordinates and rates from transition paths. Proc Natl Acad Sci USA 102(19):6732–6737ADSCrossRefGoogle Scholar
  11. Billinge SJL, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316(5824):561–565ADSCrossRefGoogle Scholar
  12. Bolhuis P, Chandler D, Dellago C, Geissler P (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318ADSCrossRefGoogle Scholar
  13. Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5):1170–1182CrossRefGoogle Scholar
  14. Branduardi D, Gervasio FL, Parrinello M (2007) From a to b in free energy space. J Chem Phys 126(5):054,103CrossRefGoogle Scholar
  15. Branduardi D, De Vivo M, Rega N, Barone V, Cavalli A (2011) Methyl phosphate dianion hydrolysis in solution characterized by path collective variables coupled with DFT-based enhanced sampling simulations. J Chem Theory Comput 7(3):539–543CrossRefGoogle Scholar
  16. Bryan K, Leise T (2006) The $25,000,000,000 eigenvector: the linear algebra behind google. SIAM Rev 48(3):569–581ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. Chuvilin A, Kaiser U, Bichoutskaia E, Besley NA, Khlobystov AN (2010) Direct transformation of graphene to fullerene. Nat Chem 2(6):450–453CrossRefGoogle Scholar
  18. De S, Bartók AP, Csányi G, Ceriotti M (2016) Comparing molecules and solids across structural and alchemical space. Phys Chem Chem Phys 18(20):13754–13769CrossRefGoogle Scholar
  19. Deaven D, Ho K (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75:288ADSCrossRefGoogle Scholar
  20. De Corato M, Bernasconi M, D’Alessio L, Ori O, Putz MV, Benedek G (2013) Topological versus physical and chemical properties of negatively curved carbon surfaces. In: Ashrafi AR, Cataldo F, Iranmanesh A, Ori O (eds) Topological modelling of nanostructures and extended systems. Springer, Dordrecht, pp 105–136CrossRefGoogle Scholar
  21. Fitzner M, Sosso GC, Pietrucci F, Pipolo S, Michaelides A (2017) Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nat Commun 8(1):2257ADSCrossRefGoogle Scholar
  22. Fu CD, Oliveira LF, Pfaendtner J (2017) Assessing generic collective variables for determining reaction rates in metadynamics simulations. J Chem Theory Comput 13(3):968–973CrossRefGoogle Scholar
  23. Gallet GA, Pietrucci F (2013) Structural cluster analysis of chemical reactions in solution. J Chem Phys 139(7):074,101CrossRefGoogle Scholar
  24. Gallet G, Pietrucci F, Andreoni W (2012) Bridging static and dynamical descriptions of chemical reactions: an ab initio study of CO2 interacting with water molecules. J Chem Theory Comput 8(11):4029–4039. https://doi.org/10.1021/ct300581n
  25. García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108(3):1127–1169CrossRefGoogle Scholar
  26. Giberti F, Salvalaglio M, Parrinello M (2015) Metadynamics studies of crystal nucleation. IUCrJ 2(2):256–266CrossRefGoogle Scholar
  27. Giuliani A, Krishnan A, Zbilut JP, Tomita M (2008) Proteins as networks: usefulness of graph theory in protein science. Curr Protein Pept Sci 9(1):28–38CrossRefGoogle Scholar
  28. Glass CW, Oganov AR, Hansen N (2006) Uspex an evolutionary crystal structure prediction. Comput Phys Commun 175(11):713–720ADSzbMATHCrossRefGoogle Scholar
  29. Goedecker S (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys 120:9911–9917ADSCrossRefGoogle Scholar
  30. Goedecker S, Hellmann W, Lenosky T (2005) Global minimum determination of the Born-Oppenheimer surface within density functional theory. Phys Rev Lett 95(5):055501ADSCrossRefGoogle Scholar
  31. Haji-Akbari A, Debenedetti PG (2015) Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc Natl Acad Sci USA 112(34):10582–10588ADSCrossRefGoogle Scholar
  32. Himoto K, Matsumoto M, Tanaka H (2014) Yet another criticality of water. Phys Chem Chem Phys 16(11):5081–5087CrossRefGoogle Scholar
  33. Ho K, Shvartsburg A, Pan B, Lu Z, Wang C, Wacker J, Fye J, Jarrold M (1998) Structures of medium-sized silicon clusters. Nature 392:582ADSCrossRefGoogle Scholar
  34. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aid Mol Des 8(6):695–708CrossRefGoogle Scholar
  35. Ivanciuc O, Balaban AT (1998) Graph theory in chemistry. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) The encyclopedia of computational chemistry. John Wiley & Sons, Chichester, pp 1169–1190Google Scholar
  36. Johansson KO, Dillstrom T, Monti M, El Gabaly F, Campbell MF, Schrader PE, Popolan-Vaida DM, Richards-Henderson NK, Wilson KR, Violi A et al (2016) Formation and emission of large furans and oxygenated hydrocarbons from flames. Proc Natl Acad Sci USA 113:8374–8379CrossRefGoogle Scholar
  37. Klotz S, Strassle T, Nelmes R, Loveday J, Hamel G, Rousse G, Canny B, Chervin J, Saitta A (2005) Nature of the polyamorphic transition in ice under pressure. Phys Rev Lett 94:025506ADSCrossRefGoogle Scholar
  38. Lai JY, Elvati P, Violi A (2014) Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion. Phys Chem Chem Phys 16(17):7969–7979CrossRefGoogle Scholar
  39. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601ADSCrossRefGoogle Scholar
  40. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99(20):12562–12566ADSCrossRefGoogle Scholar
  41. Lechner W, Dellago C (2008) Accurate determination of crystal structures based on averaged local bond order parameters. J Chem Phys 129(11):114707ADSCrossRefGoogle Scholar
  42. Lloyd L, Johnston RL (1998) Modelling aluminium clusters with an empirical many-body potential. Chem Phys 236:107CrossRefGoogle Scholar
  43. Lyon JT, Gruene P, Fielicke A, Meijer G, Janssens E, Claes P, Lievens P (2009) Structures of silicon cluster cations in the gas phase. J Am Chem Soc 131(3):1115–1121CrossRefGoogle Scholar
  44. Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG (2012) Structure of ice crystallized from supercooled water. Proc Natl Acad Sci USA 109(4):1041–1045ADSCrossRefGoogle Scholar
  45. Manolopoulos DE, Fowler PW (1992) Molecular graphs, point groups, and fullerenes. J Chem Phys 96(10):7603–7614ADSCrossRefGoogle Scholar
  46. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125(2):024106ADSCrossRefGoogle Scholar
  47. Martelli F, Ko HY, Oğuz EC, Car R (2018) Local-order metric for condensed-phase environments. Phys Rev B 97(6):064105ADSCrossRefGoogle Scholar
  48. Martínez-Núñez E (2015) An automated transition state search using classical trajectories initialized at multiple minima. Phys Chem Chem Phys 17(22):14912–14921CrossRefGoogle Scholar
  49. Martoňák R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello-Rahman method revisited. Phys Rev Lett 90(7):075503ADSCrossRefGoogle Scholar
  50. Mishima O, Stanley HE (1998) The relationship between liquid, supercooled and glassy water. Nature 396(6709):329–335ADSCrossRefGoogle Scholar
  51. Mishima O, Calvert L, Whalley E (1984) Melting ice I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310(5976):393–395ADSCrossRefGoogle Scholar
  52. Molinero V, Moore EB (2009) Water modeled as an intermediate element between carbon and silicon. J Phys Chem B 113(13):4008–4016. https://doi.org/10.1021/jp805227c
  53. Oganov AR, Valle M (2009) How to quantify energy landscapes of solids. J Chem Phys 130(10):104504ADSCrossRefGoogle Scholar
  54. Palmer JC, Martelli F, Liu Y, Car R, Panagiotopoulos AZ, Debenedetti PG (2014) Metastable liquid-liquid transition in a molecular model of water. Nature 510(7505):385–388ADSCrossRefGoogle Scholar
  55. Pfaendtner J, Branduardi D, Parrinello M, Pollard TD, Voth GA (2009) Nucleotide-dependent conformational states of actin. Proc Natl Acad Sci USA 106(31):12723–12728ADSCrossRefGoogle Scholar
  56. Piaggi PM, Parrinello M (2017) Entropy based fingerprint for local crystalline order. J Chem Phys 147(11):114112ADSCrossRefGoogle Scholar
  57. Pickard CJ, Needs R (2011) Ab initio random structure searching. J Phys Condens Matt 23(5):053201ADSCrossRefGoogle Scholar
  58. Pietrucci F (2017) Strategies for the exploration of free energy landscapes: unity in diversity and challenges ahead. Rev Phys 2:32–45CrossRefGoogle Scholar
  59. Pietrucci F, Andreoni W (2011) Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale. Phys Rev Lett 107:085504.  https://doi.org/10.1103/PhysRevLett.107.085504
  60. Pietrucci F, Andreoni W (2014) Fate of a graphene flake: a new route toward fullerenes disclosed with ab initio simulations. J Chem Theory Comput 10(3):913–917CrossRefGoogle Scholar
  61. Pietrucci F, Martoňák R (2015) Systematic comparison of crystalline and amorphous phases: charting the landscape of water structures and transformations. J Chem Phys 142(10):104704ADSCrossRefGoogle Scholar
  62. Pietrucci F, Saitta AM (2015) Formamide reaction network in gas phase and solution via a unified theoretical approach: toward a reconciliation of different prebiotic scenarios. Proc Natl Acad Sci USA 112(49):15030–15035ADSCrossRefGoogle Scholar
  63. Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F (2017) Navigating at will on the water phase diagram. Phys Rev Lett 119(24):245701ADSCrossRefGoogle Scholar
  64. Porto M, Bastolla U, Roman H, Vendruscolo M (2004) Reconstruction of protein structures from a vectorial representation. Phys Rev Lett 92(21):218101ADSCrossRefGoogle Scholar
  65. Qian W, Chuang SC, Amador RB, Jarrosson T, Sander M, Pieniazek S, Khan SI, Rubin Y (2003) Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J Am Chem Soc 125(8):2066–2067. https://doi.org/10.1021/ja029679s
  66. Radha A, Lander L, Rousse G, Tarascon J, Navrotsky A (2015) Thermodynamic stability and correlation with synthesis conditions, structure and phase transformations in orthorhombic and monoclinic Li2M(SO4)2 (M = Mn,Fe,Co,Ni) polymorphs. J Mater Chem A 3(6):2601–2608Google Scholar
  67. Roethlisberger U, Andreoni W (1991) Structural and electronic-properties of sodium microclusters (n = 2−20) at low and high-temperatures – new insights from abinitio molecular-dynamics studies. J Chem Phys 94(12):8129–8151Google Scholar
  68. Roethlisberger U, Andreoni W, Parrinello M (1994) Structure of nanoscale silicon clusters. Phys Rev Lett 72:665–668ADSCrossRefGoogle Scholar
  69. Rossi K, Baletto F (2017) The effect of chemical ordering and lattice mismatch on structural transitions in phase segregating nanoalloys. Phys Chem Chem Phys 19(18):11057–11063CrossRefGoogle Scholar
  70. Rossi G, Ferrando R (2009) Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys Condens Matter 21(8):084208ADSCrossRefGoogle Scholar
  71. Russo J, Romano F, Tanaka H (2014) New metastable form of ice and its role in the homogeneous crystallization of water. Nat Mater 13(7):733–739ADSCrossRefGoogle Scholar
  72. Saunders M (2004) Stochastic search for isomers on a quantum mechanical surface. J Comput Chem 25(5):621–626CrossRefGoogle Scholar
  73. Schoenborn SE, Goedecker S, Roy S, Oganov AR (2009) The performance of minima hopping and evolutionary algorithms for cluster structure prediction. J Chem Phys 130:144108ADSCrossRefGoogle Scholar
  74. Schreiber RE, Houben L, Wolf SG, Leitus G, Lang ZL, Carbó JJ, Poblet JM, Neumann R (2017) Real-time molecular scale observation of crystal formation. Nat Chem 9:369–373CrossRefGoogle Scholar
  75. Tribello GA, Cuny J, Eshet H, Parrinello M (2011) Exploring the free energy surfaces of clusters using reconnaissance metadynamics. J Chem Phys 135(11):114109ADSCrossRefGoogle Scholar
  76. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) Plumed 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613ADSCrossRefGoogle Scholar
  77. Valle M, Oganov AR (2010) Crystal fingerprint space–a novel paradigm for studying crystal-structure sets. Acta Cryst Sect A 66(5):507–517ADSCrossRefGoogle Scholar
  78. Wales D, Doye J (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116CrossRefGoogle Scholar
  79. Wang Y, Lv J, Zhu L, Ma Y (2012) Calypso: a method for crystal structure prediction. Comput Phys Commun 183(10):2063–2070ADSCrossRefGoogle Scholar
  80. Wang LP, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ (2014) Discovering chemistry with an ab initio nanoreactor. Nat Chem 6(12):1044–1048CrossRefGoogle Scholar
  81. Wang Y, Huang Y, Gu B, Xiao X, Liang D, Rao W (2016) Formation of the H2SO4.HSO4- dimer in the atmosphere as a function of conditions: a simulation study. Mol Phys 114(23):3475–3482ADSCrossRefGoogle Scholar
  82. Weinan E, Vanden-Eijnden E (2010) Transition-path theory and path-finding algorithms for the study of rare events. Ann Rev Phys Chem 61:391–420CrossRefGoogle Scholar
  83. Weinan E, Ren W, Vanden-Eijnden E (2005) Finite temperature string method for the study of rare events. J Phys Chem B 109(14):6688–6693. https://doi.org/10.1021/jp0455430
  84. Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2012) Large-scale screening of hypothetical metal–organic frameworks. Nat Chem 4(2):83–89CrossRefGoogle Scholar
  85. Woodley S, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater 7:937–946ADSCrossRefGoogle Scholar
  86. Yoo S, Zeng XC (2005) Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si15 to Si20. J Chem Phys 123(16):164303Google Scholar
  87. Zheng S, Pfaendtner J (2014) Car–parrinello molecular dynamics+ metadynamics study of high-temperature methanol oxidation reactions using generic collective variables. J Phys Chem C 118(20):10764–10770CrossRefGoogle Scholar
  88. Zhu L, Amsler M, Fuhrer T, Schaefer B, Faraji S, Rostami S, Ghasemi SA, Sadeghi A, Grauzinyte M, Wolverton C, Goedecker S (2016) A fingerprint based metric for measuring similarities of crystalline structures. J Chem Phys 144(3):034203ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Muséum National dHistoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMCSorbonne UniversitéParisFrance

Section editors and affiliations

  • Roberto Car
    • 1
  • Biswajit Santra
    • 2
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Princeton UniversityPrincetonUSA

Personalised recommendations