Handbook of Materials Modeling pp 1-31 | Cite as
Metadynamics: A Unified Framework for Accelerating Rare Events and Sampling Thermodynamics and Kinetics
- 1 Citations
- 11 Mentions
- 1k Downloads
Abstract
Metadynamics is an enhanced sampling algorithm in which the normal evolution of the system is biased by a history-dependent potential constructed as a sum of Gaussians centered along the trajectory followed by a suitably chosen set of collective variables. The sum of Gaussians forces the system to escape from local free energy minima and is used to iteratively build an estimator of the free energy. This original idea has been developed and improved over the years in several variants, which nowadays allow addressing in a unified framework some of the most important tasks of molecular simulations: computing the free energy as a function of the collective variables, accelerating rare events, and estimating unbiased kinetic rate constants. This chapter provides a survey of the many formulations of metadynamics with an emphasis on the underlying theoretical concepts and some hints on the appropriate manner of using this approach for solving complicated real-world problems.
References
- Baftizadeh F, Cossio P, Pietrucci F, Laio A (2012) Protein folding and ligand-enzyme binding from bias-exchange meta-dynamics simulations. Curr Phys Chem 2:79–91CrossRefGoogle Scholar
- Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 1(2):020603. https://doi.org/10.1103/PhysRevLett.100.020603
- Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1(5):826–843CrossRefGoogle Scholar
- Behler J, Martonak R, Donadio D, Parrinello M (2008) Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys Rev Lett 100(18):185501. https://doi.org/10.1103/PhysRevLett.100.185501
- Biarnés X, Pietrucci F, Marinelli F, Laio A (2012) METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations. Comput Phys Commun 183(1):203–211. https://doi.org/10.1016/j.cpc.2011.08.020ADSCrossRefGoogle Scholar
- Bonomi M, Barducci A, Parrinello M (2009a) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30(11):1615–1621CrossRefGoogle Scholar
- Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA et al (2009b) Plumed: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10):1961–1972ADSCrossRefGoogle Scholar
- Boyer MJ, Vilčiauskas L, Hwang GS (2016) Structure and li+ ion transport in a mixed carbonate/lipf 6 electrolyte near graphite electrode surfaces: a molecular dynamics study. Phys Chem Chem Phys 18(40):27868–27876CrossRefGoogle Scholar
- Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive gaussians. J Chem Theory Comput 8(7):2247–2254CrossRefGoogle Scholar
- Bui T, Phan A, Cole DR, Striolo A (2017) Transport mechanism of guest methane in water-filled nanopores. J Phys Chem C 121(29):15675–15686CrossRefGoogle Scholar
- Bussi G, Gervasio FL, Laio A, Parrinello M (2006a) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128(41):13435–13441. https://doi.org/10.1021/ja062463w CrossRefGoogle Scholar
- Bussi G, Laio A, Parrinello M (2006b) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96(9):090601. https://doi.org/10.1103/PhysRevLett.96.090601 ADSCrossRefGoogle Scholar
- Bussi G, Branduardi D et al (2015) Free-energy calculations with metadynamics: theory and practice. Rev Comput Chem 28:1–49Google Scholar
- Camilloni C, Provasi D, Tiana G, Broglia RA (2008) Exploring the protein G helix free-energy surface by solute tempering metadynamics. Proteins Struct Funct Bioinf 71(4):1647–1654. https://doi.org/10.1002/prot.21852 CrossRefGoogle Scholar
- Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 45:2471ADSCrossRefGoogle Scholar
- Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156:472–477ADSCrossRefGoogle Scholar
- Ceriani C, Laio A, Fois E, Gamba A, Martonak R, Parrinello M (2004) Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys Rev B 70(11):113403. https://doi.org/10.1103/PhysRevB.70.113403 ADSCrossRefGoogle Scholar
- Cheng T, Goddard WA, An Q, Xiao H, Merinov B, Morozov S (2017) Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells. Phys Chem Chem Phys 19(4):2666–2673CrossRefGoogle Scholar
- Crespo Y, Marinelli F, Pietrucci F, Laio A (2010) Metadynamics convergence law in a multidimensional system. Phys Rev E 81:055701. https://doi.org/10.1103/PhysRevE.81.055701 ADSCrossRefGoogle Scholar
- Cunha RA, Bussi G (2017) Unraveling Mg2+–Rna binding with atomistic molecular dynamics. RNA 23(5):628–638CrossRefGoogle Scholar
- Cvijovic D, Klinowski J (1995) Taboo search – an approach to the multiple minima problem. Science 267:664–666ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Dama JF, Parrinello M, Voth GA (2014) Well-tempered metadynamics converges asymptotically. Phys Rev Lett 112(24):240602ADSCrossRefGoogle Scholar
- Dellago C, Bolhuis P, Csajka FS, Chandler D (1998) Transition path sampling and the calculation of rate constants. J Chem Phys 108:1964–1977ADSCrossRefGoogle Scholar
- Dellago C, Bolhuis P, Geissler P (2002) Transition path sampling. Adv Chem Phys 123:1–78Google Scholar
- Di Pietro E, Pagliai M, Cardini G, Schettino V (2006) Solid-state phase transition induced by pressure in LiOH center dot H2O. J Phys Chem B 110(27):13539–13546. https://doi.org/10.1021/jp061620a CrossRefGoogle Scholar
- Donadio D, Bernasconi M (2005) Ab initio simulation of photoinduced transformation of small rings in amorphous silica. Phys Rev B 71(7):073307. https://doi.org/10.1103/PhysRevB.71.073307 ADSCrossRefGoogle Scholar
- Donadio D, Raiteri P, Parrinello M (2005) Topological defects and bulk melting of hexagonal ice. J Phys Chem B 109:5421–5424CrossRefGoogle Scholar
- Ensing B, De Vivo M, Liu Z, Moore P, Klein ML (2006) Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res 39(2):73–81CrossRefGoogle Scholar
- Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111(22–23):3345–3362ADSCrossRefGoogle Scholar
- Fitzner M, Sosso GC, Pietrucci F, Pipolo S, Michaelides A (2017) Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nat Commun 8(1):2257ADSCrossRefGoogle Scholar
- Fleming KL, Tiwary P, Pfaendtner J (2016) New approach for investigating reaction dynamics and rates with ab initio calculations. J Phys Chem A 120(2):299–305CrossRefGoogle Scholar
- Fu CD, Pfaendtner J (2018) Lifting the curse of dimensionality on enhanced sampling of reaction networks with parallel bias metadynamics. J Chem Theory Comput 14:2516–2525CrossRefGoogle Scholar
- Gil-Ley A, Bussi G (2015) Enhanced conformational sampling using replica exchange with collective-variable tempering. J Chem Theory Comput 11(3):1077–1085CrossRefGoogle Scholar
- Gil-Ley A, Bottaro S, Bussi G (2016) Empirical corrections to the amber RNA force field with target metadynamics. J Chem Theory Comput 12(6):2790–2798CrossRefGoogle Scholar
- Giorgino T, Laio A, Rodriguez A (2017) METAGUI 3: a graphical user interface for choosing the collective variables in molecular dynamics simulations. Comput Phys Commun 217:204–209ADSCrossRefGoogle Scholar
- Grubmüller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E 52(3):2893ADSCrossRefGoogle Scholar
- Hasell T, Miklitz M, Stephenson A, Little MA, Chong SY, Clowes R, Chen L, Holden D, Tribello GA, Jelfs KE et al (2016) Porous organic cages for sulfur hexafluoride separation. J Am Chem Soc 138(5):1653–1659CrossRefGoogle Scholar
- Henin J, Fiorin G, Chipot C, Klein ML (2009) Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput 6(1):35–47CrossRefGoogle Scholar
- Hosek P, Toulcova D, Bortolato A, Spiwok V (2016) Altruistic metadynamics: multisystem biased simulation. J Phys Chem B 120(9):2209–2215CrossRefGoogle Scholar
- Hu XL, Piccinin S, Laio A, Fabris S (2012) Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidationx. ACS Nano 6(12):10497CrossRefGoogle Scholar
- Huber T, Torda A, van Gunsteren W (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695–708ADSCrossRefGoogle Scholar
- Iannuzzi M, Parrinello M (2004) Proton transfer in heterocycle crystals. Phys Rev Lett 93:025901ADSCrossRefGoogle Scholar
- Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using car-m. parrinelloolecular dynamics. Phys Rev Lett 90:238302Google Scholar
- Karamertzanis PG, Raiteri P, Parrinello M, Leslie M, Price SL (2008) The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. J Phys Chem B 112(14):4298–4308. https://doi.org/10.1021/jp709764e CrossRefGoogle Scholar
- Kevrekidis IG, Gear CW, Hummer G (2004) Equation-free: the computer-aided analysis of comptex multiscale systems. Aiche J 50(7):1346–1355CrossRefGoogle Scholar
- Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350CrossRefGoogle Scholar
- Laino T, Donadio D, Kuo IFW (2007) Migration of positively charged defects in alpha-quartz. Phys Rev B 76(19):195210. https://doi.org/10.1103/PhysRevB.76.195210 ADSCrossRefGoogle Scholar
- Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601ADSCrossRefGoogle Scholar
- Laio A, Parrinello M (2002) Escaping free energy minima. Proc Natl Acad Sci USA 99:12562–12566ADSCrossRefGoogle Scholar
- Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109:6714–6721CrossRefGoogle Scholar
- Maragliano L, Vanden-Eijnden E (2006) A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett 426(1):168–175ADSCrossRefGoogle Scholar
- Marinari E, Parisi G (1992) Simulated tempering: a new Monte Carlo scheme. EPL (Europhys Lett) 19(6):451ADSCrossRefGoogle Scholar
- Marinelli F, Faraldo-Gómez JD (2015) Ensemble-biased metadynamics: a molecular simulation method to sample experimental distributions. Biophys J 108(12):2779–2782CrossRefGoogle Scholar
- Marinelli F, Pietrucci F, Laio A, Piana S (2009) A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLOS Comput Biol 5:1–18. https://doi.org/10.1371/journal.pcbi.1000452 MathSciNetCrossRefGoogle Scholar
- Martoňák R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello-Rahman method revisited. Phys Rev Lett 90:75503ADSCrossRefGoogle Scholar
- Martoňák R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Parrinello M (2005) Simulation of structural phase transitions by metadynamics. Z Krist 220:489–498Google Scholar
- Martoňák R, Donadio D, Oganov AR, Parrinello M (2006) Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nat Mater 5(8):623–626. https://doi.org/10.1038/nmat1696 ADSCrossRefGoogle Scholar
- Martoňák R, Donadio D, Oganov AR, Parrinello M (2007) From four- to six-coordinated silica: transformation pathways from metadynamics. Phys Rev B 76(1):014120. https://doi.org/10.1103/PhysRevB.76.014120 ADSCrossRefGoogle Scholar
- McCarty J, Parrinello M (2017) A variational conformational dynamics approach to the selection of collective variables in metadynamics. J Chem Phys 147(20):204109. https://doi.org/10.1063/1.4998598 ADSCrossRefGoogle Scholar
- Mendels D, McCarty J, Piaggi PM, Parrinello M (2018) Searching for entropically stabilized phases: the case of silver iodide. J Phys Chem C 122(3):1786–1790CrossRefGoogle Scholar
- Merlitz H, Wenzel W (2002) Comparison of stochastic optimization methods for receptor-ligand docking. Chem Phys Lett 362:271–277ADSCrossRefGoogle Scholar
- Michael M, de Pablo J (2013) A boundary correction algorithm for metadynamics in multiple dimensions. J Chem Phys 139:084102ADSCrossRefGoogle Scholar
- Micheletti C, Laio A, Parrinello M (2004) Reconstructing the density of states by history-dependent metadynamics. Phys Rev Lett 92:170601ADSCrossRefGoogle Scholar
- Munro CJ, Hughes ZE, Walsh TR, Knecht MR (2016) Peptide sequence effects control the single pot reduction, nucleation, and growth of au nanoparticles. J Phys Chem C 120(33):18917–18924CrossRefGoogle Scholar
- Oganov A, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of Earth’s D‘’ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438(7071):1142–1144. https://doi.org/10.1038/nature04439 ADSCrossRefGoogle Scholar
- Oliveira LF, Fu CD, Pfaendtner J (2018) Density functional tight-binding and infrequent metadynamics can capture entropic effects in intramolecular hydrogen transfer reactions. J Chem Phys 148(15):154101ADSCrossRefGoogle Scholar
- Palafox-Hernandez JP, Tang Z, Hughes ZE, Li Y, Swihart MT, Prasad PN, Walsh TR, Knecht MR (2014) Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: a thermodynamic basis for biological selectivity of inorganic materials. Chem Mater 26(17):4960–4969CrossRefGoogle Scholar
- Park S, Pande VS (2007) Choosing weights for simulated tempering. Phys Rev E 76(1):016703ADSCrossRefGoogle Scholar
- Patey GN, Valleau JP (1975) Monte-carlo method for obtaining interionic potential of mean force in ionic solution. J Chem Phys 63:2334–2339ADSCrossRefGoogle Scholar
- Pfaendtner J, Bonomi M (2015) Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J Chem Theory Comput 11(11):5062–5067CrossRefGoogle Scholar
- Piaggi PM, Valsson O, Parrinello M (2017) Enhancing entropy and enthalpy fluctuations to drive crystallization in atomistic simulations. Phys Rev Lett 119(1):015701ADSCrossRefGoogle Scholar
- Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111(17):4553–4559. https://doi.org/10.1021/jp0678731 CrossRefGoogle Scholar
- Pietrucci F, Gerra G, Andreoni W (2010) Cdte surfaces: characterizing dynamical processes with first-principles metadynamics. Appl Phys Lett 97(14):141914ADSCrossRefGoogle Scholar
- Pitera JW, Chodera JD (2012) On the use of experimental observations to bias simulated ensembles. J Chem Theory Comput 8(10):3445–3451CrossRefGoogle Scholar
- Quigley D, Rodger PM (2008) Metadynamics simulations of ice nucleation and growth. J Comput Phys 128(15):154518. https://doi.org/10.1063/1.2888999 Google Scholar
- Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110:3533–3539CrossRefGoogle Scholar
- Risken H (1989) The Fokker-Planck equation. SpringerzbMATHCrossRefGoogle Scholar
- Rohrdanz MA, Zheng W, Clementi C (2013) Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Ann Rev Phys Chem 64:295–316ADSCrossRefGoogle Scholar
- Rosso L, Mináry P, Zhu Z, Tuckerman ME (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Comput Phys 116(11):4389–4402Google Scholar
- Salvalaglio M, Tiwary P, Parrinello M (2014) Assessing the reliability of the dynamics reconstructed from metadynamics. J Chem Theor Comput 10(4):1420–1425. https://doi.org/10.1021/ct500040r CrossRefGoogle Scholar
- Salvalaglio M, Perego C, Giberti F, Mazzotti M, Parrinello M (2015) Molecular-dynamics simulations of urea nucleation from aqueous solution. Proc Natl Acad Sci 112(1):E6–E14ADSCrossRefGoogle Scholar
- Salvalaglio M, Tiwary P, Maggioni GM, Mazzotti M, Parrinello M (2016) Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations. J Chem Phys 145(21):211925ADSCrossRefGoogle Scholar
- Sidky H et al, (2018) SSAGES: Software Suite for Advanced General Ensemble Simulations. J Chem Phys 148:044104 https://doi.org/10.1063/1.5008853 ADSCrossRefGoogle Scholar
- Sultan MM, Pande VS (2017) Tica-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J Chem Theory Comput 13(6):2440–2447. https://doi.org/10.1021/acs.jctc.7b00182, pMID:28383914CrossRefGoogle Scholar
- Theodoropoulos C, Qian Y, Kevrekidis IG (2000) Coarse stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc Natl Acad Sci USA 97:9840–9843ADSzbMATHCrossRefGoogle Scholar
- Tiwary P (2017) Molecular determinants and bottlenecks in the dissociation dynamics of biotin-streptavidin. J Phys Chem B 121(48):10841–10849. https://doi.org/10.1021/acs.jpcb.7b09510 CrossRefGoogle Scholar
- Tiwary P, Berne B (2016a) How wet should be the reaction coordinate for ligand unbinding? J Chem Phys 145(5):054113ADSCrossRefGoogle Scholar
- Tiwary P, Berne BJ (2016b) Kramers turnover: from energy diffusion to spatial diffusion using metadynamics. J Chem Phys 144(13):134103–134106ADSCrossRefGoogle Scholar
- Tiwary P, Berne BJ (2016c) Spectral gap optimization of order parameters for sampling complex molecular systems. Proc Natl Acad Sci 113(11):2839–2844. https://doi.org/10.1073/pnas.1600917113 ADSCrossRefGoogle Scholar
- Tiwary P, Berne BJ (2017) Predicting reaction coordinates in energy landscapes with diffusion anisotropy. J Chem Phys 147(15):152701ADSCrossRefGoogle Scholar
- Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111:230602–230606. https://doi.org/10.1103/PhysRevLett.111.230602 ADSCrossRefGoogle Scholar
- Tiwary P, Parrinello M (2014) A time-independent free energy estimator for metadynamics. J Phys Chem B 119(3):736–742CrossRefGoogle Scholar
- Tiwary P, van de Walle A (2016) A review of enhanced sampling approaches for accelerated molecular dynamics. In: Multiscale materials modeling for nanomechanics. Springer, New York pp 195–221. https://doi.org/10.1007/978-3-319-33480-6_6 Google Scholar
- Tiwary P, Dama JF, Parrinello M (2015a) A perturbative solution to metadynamics ordinary differential equation. J Chem Phys 143(23):234112ADSCrossRefGoogle Scholar
- Tiwary P, Mondal J, Morrone JA, Berne B (2015b) Role of water and steric constraints in the kinetics of cavity–ligand unbinding. Proc Natl Acad Sci 112(39):12015–12019ADSCrossRefGoogle Scholar
- Tribello GA, Ceriotti M, Parrinello M (2012) Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc Natl Acad Sci 109(14):5196–5201ADSCrossRefGoogle Scholar
- Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) Plumed 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613ADSCrossRefGoogle Scholar
- Trudu F, Donadio D, Parrinello M (2006) Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys Rev Lett 97(10):105701. https://doi.org/10.1103/PhysRevLett.97.105701 ADSCrossRefGoogle Scholar
- Valsson O, Tiwary P, Parrinello M (2016) Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Ann Rev Phys Chem 67(1):159–184ADSCrossRefGoogle Scholar
- VandeVondele J, Rothlisberger U (2002) Canonical adiabatic free energy sampling (cafes): a novel method for the exploration of free energy surfaces. J Phys Chem B 106(1):203–208CrossRefGoogle Scholar
- Vartak S, Roudgar A, Golovnev A, Eikerling M (2013) Collective proton dynamics at highly charged interfaces studied by ab initio metadynamics. J Phys Chem B 117(2):583–588CrossRefGoogle Scholar
- Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78:3908–3911. https://doi.org/10.1103/PhysRevLett.78.3908 ADSCrossRefGoogle Scholar
- Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050ADSCrossRefGoogle Scholar
- White AD, Dama JF, Voth GA (2015) Designing free energy surfaces that match experimental data with metadynamics. J Chem Theory Comput 11(6):2451–2460CrossRefGoogle Scholar
- Zipoli F, Bernasconi M, Martoňák R (2004) Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: the graphite to diamond conversion revisited. Eur Phys J B 39:41–47ADSCrossRefGoogle Scholar