Advertisement

Object Kinetic Monte Carlo (OKMC): A Coarse-Grained Approach to Radiation Damage

  • Christophe DomainEmail author
  • Charlotte S. Becquart
Living reference work entry

Abstract

Object kinetic Monte Carlo (OKMC) approaches allow one to explicitly coarse grain atomic processes to simulate the evolution with time of the system/microstructure. This class of methods is quite versatile and can be used to model different processes where the motion of atoms in a given microstructure and their interaction with sinks and traps of the microstructure lead to changes such as phase transition or modification. In this chapter, the method is presented as applied to radiation damage modeling. Along with a description of the technique, we discuss the different pathways possible to couple OKMC with smaller- as well as larger-scale methods and conclude with a brief enumeration of what we believe are the issues for future development.

Abbreviations

AKMC

Atomic kinetic Monte Carlo

BKL

Bortz, Kalos, and Lebowitz

DFT

Density functional theory

EKMC

Event kinetic Monte Carlo

F/M

Ferritic/martensitic

FIA

Foreign interstitial atoms

FP

Frenkel pair

GPU

Graphics processing unit

KMC

Kinetic Monte Carlo

MD

Molecular dynamics

MFRT

Mean field rate theory

NEB

Nudged elastic band

ODS

Oxide dispersion strengthened

OKMC

Object kinetic Monte Carlo

PBC

Periodic boundary conditions

PD

Point defects

RPV

Reactor pressure vessel

RTA

Residence time algorithm

SFT

Stacking fault tetrahedras

SIA

Self-interstitial atom

ST

Self-trapping

TM

Trap mutation

Notes

Acknowledgments

This work is part of the EM2VM laboratory. It has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom Research and Training Programme 2014–2018 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission, and the Commission is not responsible for any use that may be made of the information it contains. Further funding from the Euratom Research and Training Programme 2014–2018 under Grant Agreement No. 661913 (Soteria) is acknowledged. This work contributes also to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).

References

  1. Adjanor G, Bugat S, Domain C, Barbu A (2010) Overview of the RPV-2 and INTERN-1 packages: from primary damage to microplasticity. J Nucl Mater 406:175–186. https://doi.org/10.1016/j.jnucmat.2009.09.006ADSCrossRefGoogle Scholar
  2. Ahlgren T, Bukonte L (2017) Sink strength simulations using the Monte Carlo method: applied to spherical traps. J Nucl Mater 496:66–76. https://doi.org/10.1016/j.jnucmat.2017.09.006ADSCrossRefGoogle Scholar
  3. Allnatt AR, Lidiard AB (2003) Atomic transport in solids. Cambridge University Press, CambridgeGoogle Scholar
  4. Athènes M, Bulatov VV (2014) Path factorization approach to stochastic simulations. Phys Rev Lett 113. https://doi.org/10.1103/PhysRevLett.113.230601
  5. Barbu A, Becquart CS, Bocquet JL et al (2005) Comparison between three complementary approaches to simulate ‘large’ fluence irradiation: application to electron irradiation of thin foils. Philos Mag 85:541–547. https://doi.org/10.1080/14786430412331334616ADSCrossRefGoogle Scholar
  6. Becquart CS, Domain C (2010) Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation. Phys Status Solidi B 247:9–22. https://doi.org/10.1002/pssb.200945251ADSCrossRefGoogle Scholar
  7. Becquart CS, Mousseau N, Domain C (2018) AKMC and solute effects. Springer. Homer E. Handbook of Materials Modeling, SingaporeGoogle Scholar
  8. Becquart CS, Wirth BD (2012) Kinetic Monte Carlo simulations of irradiation effects. In: Comprehensive nuclear materials. Elsevier, pp 393–410. https://doi.org/10.1016/B978-0-08-056033-5.00030-6CrossRefGoogle Scholar
  9. Becquart CS, Barbu A, Bocquet JL et al (2010) Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods. J Nucl Mater 406:39–54. https://doi.org/10.1016/j.jnucmat.2010.05.019ADSCrossRefGoogle Scholar
  10. Becquart CS, De Backer A, Domain C (2018) Atomistic modelling of radiation damage in metallic alloys. Springer. Hsueh CH et al. (eds), Handbook of Mechanics of Materials, https://doi.org/10.1007/978-981-10-6855-3_21-1Google Scholar
  11. Becquart CS, Soisson F (2018) Monte-Carlo simulations of precipitation under irradiation. In: Hsueh CH et al. (eds) Handbook of Mechanics of Materials. Springer, SingaporeGoogle Scholar
  12. Bonny G, Castin N, Pascuet MI, Çelik Y (2017) Exact mean field concept to compute defect energetics in random alloys on rigid lattices. Phys B Condens Matter 517:25–29. https://doi.org/10.1016/j.physb.2017.04.032ADSCrossRefGoogle Scholar
  13. Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for Monte Carlo simulation of Ising spin systems. J Comput Phys 17:10–18. https://doi.org/10.1016/0021-9991(75)90060-1ADSCrossRefGoogle Scholar
  14. Carpentier D, Jourdan T, Le Bouar Y, Marinica M-C (2017) Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities. Acta Mater 136:323–334. https://doi.org/10.1016/j.actamat.2017.07.013CrossRefGoogle Scholar
  15. Castin N, Pascuet MI, Malerba L (2011) Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach. J Chem Phys 135:064502. https://doi.org/10.1063/1.3622045ADSCrossRefGoogle Scholar
  16. Castin N, Bakaev A, Bonny G et al (2017) On the onset of void swelling in pure tungsten under neutron irradiation: an object kinetic Monte Carlo approach. J Nucl Mater 493:280–293. https://doi.org/10.1016/j.jnucmat.2017.06.008ADSCrossRefGoogle Scholar
  17. Castin N, Bonny G, Bakaev A et al (2018) Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities. J Nucl Mater 500:15–25. https://doi.org/10.1016/j.jnucmat.2017.12.014ADSCrossRefGoogle Scholar
  18. Caturla MJ, Aliaga MJ, Martin-Bragado I et al (2016) Microstructure evolution in Fe and Fe-Cr alloys with OKMC methods. EPJ Web Conf 115:03001. https://doi.org/10.1051/epjconf/201611503001CrossRefGoogle Scholar
  19. Chang Z, Olsson P, Terentyev D, Sandberg N (2013) Dislocation bias factors in fcc copper derived from atomistic calculations. J Nucl Mater 441:357–363. https://doi.org/10.1016/j.jnucmat.2013.06.029ADSCrossRefGoogle Scholar
  20. Chang Z, Terentyev D, Sandberg N et al (2015) Anomalous bias factors of dislocations in bcc iron. J Nucl Mater 461:221–229. https://doi.org/10.1016/j.jnucmat.2015.03.025ADSCrossRefGoogle Scholar
  21. Chiapetto M, Malerba L, Becquart CS (2015a) Nanostructure evolution under irradiation in FeMnNi alloys: a “grey alloy” object kinetic Monte Carlo model. J Nucl Mater 462:91–99. https://doi.org/10.1016/j.jnucmat.2015.03.045ADSCrossRefGoogle Scholar
  22. Chiapetto M, Malerba L, Becquart CS (2015b) Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: an object kinetic Monte Carlo model. J Nucl Mater 465:326–336. https://doi.org/10.1016/j.jnucmat.2015.06.012ADSCrossRefGoogle Scholar
  23. De Backer A, Adjanor G, Domain C et al (2015) Modeling of helium bubble nucleation and growth in austenitic stainless steels using an object kinetic Monte Carlo method. Nucl Instrum Methods Phys Res Sect B 352:107–114. https://doi.org/10.1016/j.nimb.2014.11.110ADSCrossRefGoogle Scholar
  24. Domain C, Becquart CS, Malerba L (2004) Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater 335:121–145. https://doi.org/10.1016/j.jnucmat.2004.07.037ADSCrossRefGoogle Scholar
  25. Dopico I, Castrillo P, Martin-Bragado I (2015) Quasi-atomistic modeling of the microstructure evolution in binary alloys and its application to the FeCr case. Acta Mater 95:324–334. https://doi.org/10.1016/j.actamat.2015.05.040CrossRefGoogle Scholar
  26. Fikar J, Gröger R, Schäublin R (2017a) Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten. Nucl Instrum Methods Phys Res Sect B 393:186–189. https://doi.org/10.1016/j.nimb.2016.10.006ADSCrossRefGoogle Scholar
  27. Fikar J, Gröger R, Schäublin R (2017b) Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2017.07.032ADSCrossRefGoogle Scholar
  28. Garnier T, Nastar M (2013) Coarse-grained kinetic Monte Carlo simulation of diffusion in alloys. Phys Rev B 88. https://doi.org/10.1103/PhysRevB.88.134207
  29. Ghoniem N. Rate theory. Springer. Homer E. Handbook of Materials Modeling, SingaporeGoogle Scholar
  30. Heinisch HL (1983) Defect production in simulated cascades: cascade quenching and short-term annealing. J Nucl Mater 117:46–54. https://doi.org/10.1016/0022-3115(83)90008-9ADSCrossRefGoogle Scholar
  31. Heinisch HL, Singh BN (2002) The effects of one-dimensional migration of self-interstitial clusters on the formation of void lattices. J Nucl Mater 307–311:876–880. https://doi.org/10.1016/S0022-3115(02)01005-XADSCrossRefGoogle Scholar
  32. Heinisch HL, Trinkaus H, Singh BN (2007) Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration. J Nucl Mater 367–370:332–337. https://doi.org/10.1016/j.jnucmat.2007.03.034ADSCrossRefGoogle Scholar
  33. Henkelman G, Jónsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115:9657. https://doi.org/10.1063/1.1415500ADSCrossRefGoogle Scholar
  34. Hou J, Kong X-S, Li X-Y et al (2016) Modification on theory of sink strength: an object kinetic Monte Carlo study. Comput Mater Sci 123:148–157. https://doi.org/10.1016/j.commatsci.2016.06.024CrossRefGoogle Scholar
  35. Hudson TS, Dudarev SL, Caturla M-J, Sutton AP (2005) Effects of elastic interactions on post-cascade radiation damage evolution in kinetic Monte Carlo simulations. Philos Mag 85:661–675. https://doi.org/10.1080/14786430412331320026ADSCrossRefGoogle Scholar
  36. Jansson V, Malerba L (2013) Simulation of the nanostructure evolution under irradiation in Fe–C alloys. J Nucl Mater 443:274–285. https://doi.org/10.1016/j.jnucmat.2013.07.046ADSCrossRefGoogle Scholar
  37. Jansson V, Malerba L (2014) OKMC simulations of Fe–C systems under irradiation: sensitivity studies. J Nucl Mater 452:118–124. https://doi.org/10.1016/j.jnucmat.2014.05.011ADSCrossRefGoogle Scholar
  38. Jansson V, Malerba L, De Backer A et al (2013) Sink strength calculations of dislocations and loops using OKMC. J Nucl Mater 442:218–226. https://doi.org/10.1016/j.jnucmat.2013.08.052ADSCrossRefGoogle Scholar
  39. Jiménez F, Ortiz CJ (2016) A GPU-based parallel object kinetic Monte Carlo algorithm for the evolution of defects in irradiated materials. Comput Mater Sci 113:178–186. https://doi.org/10.1016/j.commatsci.2015.11.011CrossRefGoogle Scholar
  40. Johnson MD, Caturla M-J, Díaz de la Rubia T (1998) A kinetic Monte–Carlo study of the effective diffusivity of the silicon self-interstitial in the presence of carbon and boron. J Appl Phys 84:1963–1967. https://doi.org/10.1063/1.368328ADSCrossRefGoogle Scholar
  41. Jourdan T, Crocombette J-P (2012) Rate theory cluster dynamics simulations including spatial correlations within displacement cascades. Phys Rev B 86. https://doi.org/10.1103/PhysRevB.86.054113
  42. Jourdan T, Fu CC, Joly L et al (2011) Direct simulation of resistivity recovery experiments in carbon-doped α-iron. Phys Scr 2011:014049. https://doi.org/10.1088/0031-8949/2011/T145/014049CrossRefGoogle Scholar
  43. Jourdan T, Bencteux G, Adjanor G (2014) Efficient simulation of kinetics of radiation induced defects: a cluster dynamics approach. J Nucl Mater 444:298–313. https://doi.org/10.1016/j.jnucmat.2013.10.009ADSCrossRefGoogle Scholar
  44. Lanore J-M (1974) Simulation de l’evolution des defauts dans un reseau par le methode de monte-carlo. Radiat Eff 22:153–162. https://doi.org/10.1080/10420157408230773CrossRefGoogle Scholar
  45. Malerba L, Becquart CS, Domain C (2007) Object kinetic Monte Carlo study of sink strengths. J Nucl Mater 360:159–169. https://doi.org/10.1016/j.jnucmat.2006.10.002ADSCrossRefGoogle Scholar
  46. Marian J, Becquart CS, Domain C et al (2017) Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions. Nucl Fusion 57:092008. https://doi.org/10.1088/1741-4326/aa5e8dADSCrossRefGoogle Scholar
  47. Martin-Bragado I, Rivera A, Valles G et al (2013) MMonCa: an object kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun 184:2703–2710. https://doi.org/10.1016/j.cpc.2013.07.011ADSCrossRefGoogle Scholar
  48. Martin-Bragado I, Abujas J, Galindo PL, Pizarro J (2015) Synchronous parallel kinetic Monte Carlo: implementation and results for object and lattice approaches. Nucl Instrum Methods Phys Res Sect B 352:27–30. https://doi.org/10.1016/j.nimb.2014.12.081ADSCrossRefGoogle Scholar
  49. Martínez E, Marian J, Kalos MH, Perlado JM (2008) Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J Comput Phys 227:3804–3823. https://doi.org/10.1016/j.jcp.2007.11.045ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. Mason DR, Yi X, Kirk MA, Dudarev SL (2014) Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils. J Phys Condens Matter 26:375701. https://doi.org/10.1088/0953-8984/26/37/375701CrossRefGoogle Scholar
  51. Nandipati G, Setyawan W, Heinisch HL et al (2015) Displacement cascades and defect annealing in tungsten, part II: object kinetic Monte Carlo simulation of tungsten cascade aging. J Nucl Mater 462:338–344. https://doi.org/10.1016/j.jnucmat.2014.09.067ADSCrossRefGoogle Scholar
  52. Pannier B (2017) Towards the prediction of microstructure evolution under irradiation of model ferritic alloys with an hybrid AKMC-OKMC approach. PhD dissertation, Université LilleGoogle Scholar
  53. Rodríguez-Martínez FJ, Castejón-Mochón JF, Castrillo P et al (2017) Kinetic Monte Carlo simulation of phase-precipitation versus instability behavior in short period FeCr superlattices. Nucl Instrum Methods Phys Res Sect B 393:135–139. https://doi.org/10.1016/j.nimb.2016.09.026ADSCrossRefGoogle Scholar
  54. Rouchette H, Thuinet L, Legris A et al (2014) Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr: multiscale modeling. Phys Rev B 90:014104. https://doi.org/10.1103/PhysRevB.90.014104ADSCrossRefGoogle Scholar
  55. Schaefer H-E, Maier K, Weller M et al (1977) Vacancy formation in iron investigated by positron annihilation in thermal equilibrium. Scr Metall 11:803–809. https://doi.org/10.1016/0036-9748(77)90079-5CrossRefGoogle Scholar
  56. Soisson F, Becquart CS, Castin N et al (2010) Atomistic kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation. J Nucl Mater 406:55–67. https://doi.org/10.1016/j.jnucmat.2010.05.018ADSCrossRefGoogle Scholar
  57. Soneda N, Ishino S, Takahashi A, Dohi K (2003) Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation. J Nucl Mater 323:169–180. https://doi.org/10.1016/j.jnucmat.2003.08.021ADSCrossRefGoogle Scholar
  58. Souidi A, Hou M, Becquart CS et al (2011) On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J Nucl Mater 419:122–133. https://doi.org/10.1016/j.jnucmat.2011.08.049ADSCrossRefGoogle Scholar
  59. Stoller RE, Golubov SI, Domain C, Becquart CS (2008) Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J Nucl Mater 382:77–90. https://doi.org/10.1016/j.jnucmat.2008.08.047ADSCrossRefGoogle Scholar
  60. Takahashi A, Sharafat S, Nagasawa K et al (2010) Kinetic Monte Carlo simulation of helium-bubble evolution in ODS steels. J ASTM Int 7:101971. https://doi.org/10.1520/JAI101971CrossRefGoogle Scholar
  61. Trochet M, Béland LK, Joly J-F et al (2015) Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method. Phys Rev B 91:224106. https://doi.org/10.1103/PhysRevB.91.224106ADSCrossRefGoogle Scholar
  62. Valles G, Panizo-Laiz M, González C et al (2017) Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater 122:277–286. https://doi.org/10.1016/j.actamat.2016.10.007CrossRefGoogle Scholar
  63. Vattré A, Jourdan T, Ding H et al (2016) Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat Commun 7:10424. https://doi.org/10.1038/ncomms10424ADSCrossRefGoogle Scholar
  64. Vehanen A, Hautojärvi P, Johansson J et al (1982) Vacancies and carbon impurities in α – iron: electron irradiation. Phys Rev B 25:762–780. https://doi.org/10.1103/PhysRevB.25.762ADSCrossRefGoogle Scholar
  65. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127. https://doi.org/10.1016/0022-3697(57)90059-8ADSCrossRefGoogle Scholar
  66. Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Radiation effects in solids. Springer, Dordrecht, pp 1–23Google Scholar
  67. Was GS (2017) Fundamentals of radiation materials science: metals and alloys. Springer, New YorkCrossRefGoogle Scholar
  68. Young WM, Elcock EW (1966) Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc 89:735. https://doi.org/10.1088/0370-1328/89/3/329ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EDF R&D, Département MMCLes RenardièresMoret sur LoingFrance
  2. 2.UMET, Unité Matériaux et TransformationsUniversity Lille, CNRS, INRA, ENSCL, UMR 8207LilleFrance
  3. 3.EM2VM, Joint laboratory Study and Modeling of the Microstructure for Ageing of MaterialsLille/Moret sur LoingFrance

Section editors and affiliations

  • Ying Chen
    • 1
  • Eric Homer
    • 2
  • Christopher A. Schuh
    • 3
  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Mechanical EngineeringBingham Young UniversityProvoUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations