Advertisement

Fabrication of Nanofibers: Electrospinning and Non-Electrospinning Techniques

  • Dalapathi Gugulothu
  • Ahmed Barhoum
  • Raghunandan Nerella
  • Ramkishan Ajmer
  • Mikhael Bechlany
Living reference work entry

Abstract

Fabrication of nanofibers has received increasing attention due to their unique properties and wide range of applications in energy production, energy storage, environmental protection and improvement, healthcare, and many more. Nanofibers provide a good material system that can improve the electrical, optical, thermal, and mechanical properties of many types of bulk materials. To date, various materials (metal, metal oxides, ceramics, polymers, and carbon) have been fabricated into nanofibers by electrospinning and non-electrospinning. Hence, several non-electrospinning techniques were developed to improve the production yield of nanofibers. Some of these techniques include solution blowing (or air-jet spinning), drawing techniques, template synthesis, centrifugal spinning, phase inversion/separation, and freeze/drying synthesis. This chapter discusses the designing, fabrication, and properties of nanofibers for various morphologies and compositions. A comprehensive review is presented on electrospinning and non-electrospinning techniques, along with their synthesis mechanisms. The chapter splits the nanofiber fiber fabrication techniques into: physical synthetic routes (e.g., mechanical milling, physical vapor deposition, laser ablation, and electrospinning) and chemical synthetic methods (e.g., Chemical vapor deposition, hydrothermal, sol-gel, template assisted synthesis, sonochemical and microwave synthesis, and electrochemical deposition).

Keywords

Nanofiber design Fabrication techniques Laser ablation method Hydrothermal method Sol-gel method Electrospinning Physical and chemical vapor deposition 

References

  1. 1.
    Li Y, Yang XY, Feng Y, Yuan ZY, Su BL (2012) One dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State Mater Sci 37:1–74CrossRefGoogle Scholar
  2. 2.
    Liu WJ, Xu J, Hu W, Long Yang J, Hong S (2016) Systematic synthesis of tellurium nanostructures and their optical properties: from nanoparticles to nanorods, nanowires, and nanotubes. Chem Nano Mat 2:167–170Google Scholar
  3. 3.
    Xia W, Wang P, Sun Y, Wu Y, Mayers B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  4. 4.
    Zhao B, Wang Y, Guo H, Wang J, He Y et al (2007) Iron oxide(III) nanoparticles fabricated by electron beam irradiation method. Mater Sci Poland 2:1143–1148Google Scholar
  5. 5.
    Zhen H, Yuan Y, Jian W, Shu HY (2017) Emerging tellurium nanostructures: controllable synthesis and their applications. Chem Soc Rev 46:2732–2753CrossRefGoogle Scholar
  6. 6.
    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50CrossRefGoogle Scholar
  7. 7.
    Devan RS, Patil RA, Lin JH, Ma YR (2012) One dimensional metal oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370CrossRefGoogle Scholar
  8. 8.
    Ming ZYT, Hongbo Z, Noshir P, Jacob I (2015) Nanofibers: clumping criteria of vertical nanofibers on surfaces. Adv Mat Inter 2:1–15Google Scholar
  9. 9.
    Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135CrossRefGoogle Scholar
  10. 10.
    Stojanovska E, Canbay E, Pampal ES, Calisir MD, Agma O et al (2016) A review on non-electro nanofibre spinning techniques. RSC Adv 6:83783CrossRefGoogle Scholar
  11. 11.
    Savale PA (2016) Physical vapor deposition (PVD) methods for synthesis of thin films: a comparative study. Arch Appl Sci Res 8:1–8Google Scholar
  12. 12.
    Perez TE, Gracia PM, Mejia RS, Ortiz MU, Torres A et al (2008) Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Discuss 138:353–362CrossRefGoogle Scholar
  13. 13.
    Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803CrossRefGoogle Scholar
  14. 14.
    Tavangar A, Tan B, Venkatakrishnan K (2013) Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air. J Appl Phys 113:023102–023110CrossRefGoogle Scholar
  15. 15.
    Li YB, Bando Y, Golberg D, Kurashima K (2003) WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chem Phys Lett 367:214–218CrossRefGoogle Scholar
  16. 16.
    Phan LT, Yoon SM, Moon MW (2017) Plasma-based nanostructuring of polymers: a review. Polymers 9:417–441 (15)CrossRefGoogle Scholar
  17. 17.
    Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7:2726–2732CrossRefGoogle Scholar
  18. 18.
    Wang Y, Qin QZ (2002) A nanocrystalline NiO thin film electrode prepared by pulsed laser ablation for li-ion batteries. J Electrochem Soc 149:A873–A887CrossRefGoogle Scholar
  19. 19.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener Nano synthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  20. 20.
    Suda Y, Tanaka A, Okita A, Sakai Y, Sugawara H (2007) Growth of carbon nanofibers on metal-catalyzed substrates by pulsed laser ablation of graphite. J Phys Conf Ser 59:348–353CrossRefGoogle Scholar
  21. 21.
    Venkatakrishnan K, Vipparty D, Tan B (2011) Nanofibre fabrication by femtosecond laser ablation of silica glass. Opt Exp 19:15770–15776CrossRefGoogle Scholar
  22. 22.
    Sivakumar M, Venkatakrishnan K, Tan B (2009) Synthesis of glass nanofibers using femtosecond laser radiation under ambient condition. Nanoscale Res Lett 4:1263–1266CrossRefGoogle Scholar
  23. 23.
    Markillie AJ, Baker HJ, Villarreal FJ, Hall DR (2002) Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components. Appl Opt 41:5660–5667CrossRefGoogle Scholar
  24. 24.
    Shah MA, Ahmad T (2010) Principles of nanoscience and nanotechnology. Narosa Publishing House, New DelhiGoogle Scholar
  25. 25.
    Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037CrossRefGoogle Scholar
  26. 26.
    Qin Y, Qiu X, Zhu JY (2016) Understanding longitudinal wood Fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis. Sci Report 6:35602CrossRefGoogle Scholar
  27. 27.
    Li D, Zhang W, Sun R, Hua-Yong HT, Chen G (2016) Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries. Nanoscale 8:12202–12214CrossRefGoogle Scholar
  28. 28.
    Creighton JR, Ho P (2001) Introduction to chemical vapor deposition (CVD). ASM international chemical vapor deposition (#06682G). ASM International, Materials ParkGoogle Scholar
  29. 29.
    Jiang X (2016) CVD growth of carbon nanofibers. Phys Status Solidi A 211:2679–2687CrossRefGoogle Scholar
  30. 30.
    Patil G, Sarode C, Patil R, Gokhale S (2012) CVD synthesis of highly graphitized single-walled carbon nanotubes using nitrogen-pretreatedFeMo/MgO catalyst. Chem Lett 41:871–873CrossRefGoogle Scholar
  31. 31.
    Bhattacharjee CR, Nath A (2012) Chemical vapour deposition (CVD) technique and the synthesis of carbon nanomaterials (CNMs). J Chem Pharm Res 4:706–713Google Scholar
  32. 32.
    Duan H, Jianyu L, Xia Z (2010) Synthetic hierarchical nanostructures: growth of carbon nanofibers on microfibers by chemical vapor deposition. Mater Sci Eng B 166:190–195CrossRefGoogle Scholar
  33. 33.
    Lin CC, Pan FM, Chang KC, Kuo CW, Kub CT (2009) Mechanistic study of cobalt catalyzed growth of carbon nanofibers in a confined space by plasma-assisted chemical vapor deposition. Diamond Relat Mater 18:1301–1305CrossRefGoogle Scholar
  34. 34.
    Ding EX, Wang J, Geng HZ, Wang WY, Wang Y (2015) Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Sci Report 5:1–9Google Scholar
  35. 35.
    Che G, Lakshmi BB, Martin CR, Fisher ER (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267CrossRefGoogle Scholar
  36. 36.
    Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–257Google Scholar
  37. 37.
    Zeng Z, Zhang W, Liu Y, Lu P et al (2017) Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction. Electrochim Acta 256:232–240CrossRefGoogle Scholar
  38. 38.
    Cheng F, Tao Z, Liang J, Chen J (2008) Template-directed materials for rechargeable Lithium-ion batteries. Chem Mater 20(3):667–681CrossRefGoogle Scholar
  39. 39.
    Nam DH, Kim TH, Hong KS, Kwon HS (2014) Template-free electrochemical synthesis of sn nanofibers as high-performance anode materials for na-ion batteries. ACS Nano 8:11824–11835CrossRefGoogle Scholar
  40. 40.
    Byrappa K, Yoshimura M (2012) Handbook of hydrothermal technology. William Andrew, PubGoogle Scholar
  41. 41.
    Sheets WC, Mugnier E, Barnabe A, Marks TJ, Poeppelmeier KR (2006) Hydrothermal synthesis of delafossite- type oxides. Chem Mater 18:7–20CrossRefGoogle Scholar
  42. 42.
    Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817CrossRefGoogle Scholar
  43. 43.
    Durrani SK, Hussain SZ, Saeed K, Khan Y, Arif M et al (2012) Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk J Chem 36:111–120Google Scholar
  44. 44.
    Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27:2946–2952CrossRefGoogle Scholar
  45. 45.
    Choy JH, Jang ES, Won JH (2004) Hydrothermal route to ZnOnanocoral reefs and nanofibers. Appl Phys Lett 84:287CrossRefGoogle Scholar
  46. 46.
    Gu G, Cheng J, Li X, Ni W, Guan Q (2015) Facile synthesis of graphene supported ultralong TiO2 nanofibers from the commercial titania for high performance lithium-ion batteries. J Mater Chem A 3:6642–6648CrossRefGoogle Scholar
  47. 47.
    Lu CL, Lv JG, Xu L, Guo XF, Hou WH et al (2009) Crystalline nanotubes of γ-AlOOH and γ-Al2O3: hydrothermal synthesis, formation mechanism and catalytic performance. Nanotechnol 20:215–604Google Scholar
  48. 48.
    Suchanek WL, Garces JM, Fulvio PF, Jaroniec M (2010) Hydrothermal synthesis and surface characteristics of novel alpha alumina nanosheets with controlled chemical composition. Chem Mater 22:6564–6574CrossRefGoogle Scholar
  49. 49.
    Li D, McCann JT, Xia Y (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89:1861–1869CrossRefGoogle Scholar
  50. 50.
    Shen SC, Ng WK, Zhong ZY, Dong YC, Chia L, Tan RBH (2009) Solid- based hydrothermal synthesis and characterization of alumina nanofibers with controllable aspect ratios. J Am Ceram Soc 92:1311–1316CrossRefGoogle Scholar
  51. 51.
    Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C 4:4092–4124CrossRefGoogle Scholar
  52. 52.
    Mourad MCD, Byelov DV, Petukhov AV, Winter DAM, Verkleij AJ et al (2009) Sol-gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platelets. J Phys Chem B 113:11604–11613CrossRefGoogle Scholar
  53. 53.
    Wu Y, He Y, Wu T, Chen T, Weng W et al (2007) Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method. Mater Lett 61:3174–3178CrossRefGoogle Scholar
  54. 54.
    Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C4:4092–4124Google Scholar
  55. 55.
    Watthanaarun J, Pavarajarn V, Supaphol P (2005) Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant. Sci Technol Adv Mater 6:240–245CrossRefGoogle Scholar
  56. 56.
    Pirzada T, Arvidson SA, Saquing SD, Shah SS, Khan SA (2014) Hybrid carbon silica nanofibers through sol–gel electrospinning. Langmuir 30:15504–15513CrossRefGoogle Scholar
  57. 57.
    Teoh GL, Liew KY, WAK M (2007) Synthesis and characterization of sol–gel alumina nanofibers. J Sol Gel Sci Technol 44:177–186CrossRefGoogle Scholar
  58. 58.
    Teoh GL, Liew KY, Mahmood WAK (2007) Synthesis and characterization of sol- gel alumina nanofibers. J Sol-Gel Techno l44:177–186CrossRefGoogle Scholar
  59. 59.
    Wang J, Wang Y, Qiao M, Xie S, Fan K (2007) A novel sol-gel synthetic route to alumina nanofibers via aluminium nitrate and hexamethylenetetramine. Mater Lett 61:5074–5077CrossRefGoogle Scholar
  60. 60.
    Chandradass J, Bae DS, Balasubramanian M (2008) Synthesis and characterization of sol-gel alumina fiber by seeding α-alumina through extended ball milling. Mater Manuf Process 23:786–790CrossRefGoogle Scholar
  61. 61.
    Zhan S, Chen D, Jiao X, Liu S (2017) Facile fabrication of long α-Fe2O3, α-fe and γ -Fe2O3 hollow fibers using sol–gel combined co-electrospinning technology. J Colloid Interf Sci 308:265–270CrossRefGoogle Scholar
  62. 62.
    Shafi KVPM, Ulman A, Yan X, Yang NL, Estournes C et al (2001) Sonochemical synthesis of functionalized amorphous Iron oxide nanoparticles. Langmuir 17:5093–5097CrossRefGoogle Scholar
  63. 63.
    Ziylan A, Koltypin Y, Gedanken A, Ince NH (2013) More on sonolytic and sonocatalytic decomposition of Diclofenac using zero-valent iron. Ultrason Sonochem 20:580–586CrossRefGoogle Scholar
  64. 64.
    Aslani A, Morsali A (2009) Sonochemical synthesis of nano-sized metal-organic lead (II) polymer: a precursor for the preparation of nano-structured lead (II) iodide and lead (II) oxide. Inorganica Chimica Acta 362:5012–5016CrossRefGoogle Scholar
  65. 65.
    Zhang LBDJ, Liu J (2004) Effects of ultrasound on the microenvironment in reverse micelles and synthesis of nanorods and nanofibers. Phys Chem Chem Phys 6:2391–2395CrossRefGoogle Scholar
  66. 66.
    Jing X, Wang Y, Wu D, Qiang J (2007) Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 14:75–80CrossRefGoogle Scholar
  67. 67.
    Lu X, Mao H, Chao D, Zhang W, Wei Y (2006) Fabrication of polyaniline nanostructures under ultrasonic irradiation: from nanotubes to nanofibers. Macromol Chem Phys 207:2142–2152CrossRefGoogle Scholar
  68. 68.
    Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polym 137:608–616CrossRefGoogle Scholar
  69. 69.
    Bigdeli S, Fatei S (2015) Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation; a modified Nano-adsorbent for deep desulfurization of liquid fuels. Che Eng J 269:306–315CrossRefGoogle Scholar
  70. 70.
    Boskovic BO, Stolojan V, Zeze DA, Forrest RD, Silva SRP (2004) Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas. J Appl Phys 96:3443CrossRefGoogle Scholar
  71. 71.
    Nyutu EK, Chen CH, Sithambaram S, Crisostomo VMB, Suib SL (2008) Systematic control of particle size in rapid open-vessel microwave synthesis of K-OMS-2 nanofibers. J Phys Chem C 112:6786–6793CrossRefGoogle Scholar
  72. 72.
    Druzhinina T, Hoeppener S, Schubert US (2009) On the synthesis of carbon nanofibers and nanotubes by microwave irradiation: parameters, catalysts, and substrates. Adv Funct Mater 19:2819–2825CrossRefGoogle Scholar
  73. 73.
    Druzhinina T, Weltjens W, Hoeppener S, Schubert US (2009) The selective heating of Iron nanoparticles in a single-mode microwave for the patterned growths of carbon nanofibers and nanotubes. Adv Funct Mater 19:1287–1292CrossRefGoogle Scholar
  74. 74.
    Teo WE, Ramakrishn S (2009) Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol 69:1804–1817CrossRefGoogle Scholar
  75. 75.
    Matthew DB, Dmitry L, Deepak T, Michel D (2007) Nano fiber based drug delivery; nanoparticulate drug delivery systems. Informa healthcare 166:64–65Google Scholar
  76. 76.
    Verrect G, Chun I, Rosenblatt J, Peeters J, Dijck AV et al (2003) Incorporation of drugs in an amorphous state in electrospun nanofibers composed of as water insoluble, non biodegradable polymer. J Control Release 92(3):349–360CrossRefGoogle Scholar
  77. 77.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRefGoogle Scholar
  78. 78.
    Liang D, Hsiao BNS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliver Rev 59:1392–1412CrossRefGoogle Scholar
  79. 79.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  80. 80.
    Matsumoto H, Tanioka A (2011) Functionality in electrospun nanofibrous membranes based on Fiber’s size, surface area, and molecular orientation. Membranes 1:249–264CrossRefGoogle Scholar
  81. 81.
    Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22:326–338CrossRefGoogle Scholar
  82. 82.
    Elahi MF, Lu W, Guoping G, Khan F (2013) Core-shell fibers for biomedical applications-a review. J Bioeng Biomed Sci 3:121.  https://doi.org/10.4172/2155-9538.1000121CrossRefGoogle Scholar
  83. 83.
    Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6:94595–94616CrossRefGoogle Scholar
  84. 84.
    Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718CrossRefGoogle Scholar
  85. 85.
    Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:9.  https://doi.org/10.3390/inventions2020009CrossRefGoogle Scholar
  86. 86.
    Zhu Y, Zhang JC, Zhai J, Jiang L (2006) Preparation of superhydrophilic α-Fe2O3 nanofibers with tunable magnetic properties. Thin Solid Films 510:271–274CrossRefGoogle Scholar
  87. 87.
    Dai H, Gong J, Kim H, Lee D (2002) A novel method for preparing ultra- fine alumina- borate oxide fibers via electrospinning technique. Nanotechnol 13:674–677CrossRefGoogle Scholar
  88. 88.
    Azad AM (2006) Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater Sci Eng A 435–436:468–473CrossRefGoogle Scholar
  89. 89.
    Panda PK, Ramakrishna S (2007) Electrospinning of alumina nanofibers using different precursors. J Mater Sci 42:2189–2193CrossRefGoogle Scholar
  90. 90.
    Peng C, Zhang J, Xiong Z, Zha B, Liu P (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor Mater:133–142Google Scholar
  91. 91.
    Li L, Peng S, Lee JKY, Ji D et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRefGoogle Scholar
  92. 92.
    Zhan S, Chen D, Jiao X, Liu S (2007) Facile fabrication of long α-Fe2O3, α-fe, α- Fe2O3 hollow fibers using sol- gel combined co-electrospinning technology. J Colloid Interface Sci 308(1):265–270CrossRefGoogle Scholar
  93. 93.
    Zheng W, Li Z, Zhang H, Wang W, Wang Y et al (2009) Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull 44:1432–1436CrossRefGoogle Scholar
  94. 94.
    Eid C, Brioude A, Salles V, Plenet JC, Asmar R et al (2010) Iron based 1D nanostructures by electrospinning process. Nanotechnol 21:125701–125707CrossRefGoogle Scholar
  95. 95.
    Cho JS, Park JS, Kang YC (2016) Preparation of hollow Fe2O3 nanorods and nanospheres by nanoscale kirkendall diffusion, and their electrochemical properties for use in Lithium-ion batteries. Sci Report 6:38933CrossRefGoogle Scholar
  96. 96.
    Hwang SM, Kim SY, Kim JM, Kim KJ, Lee JW (2015) Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 7:8351–8355CrossRefGoogle Scholar
  97. 97.
    Park SH, Kim BK, Lee WJ (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRefGoogle Scholar
  98. 98.
    Lee J, Choi H, Park S, Won D, Park H et al (2010) Fabrications of poly(vinylidenefluoride-co-hexafluoropropylene) nanofibers containing inorganic filler by electrospinning technique and its application to dye-sensitized solar cells. Mol Cryst Liq Cryst 519:234–244CrossRefGoogle Scholar
  99. 99.
    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Cer 1:2–23CrossRefGoogle Scholar
  100. 100.
    Yang X, Shao C, Liu Y (2007) Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. J Mater Sci 42:8470–8472CrossRefGoogle Scholar
  101. 101.
    Asokan K, Park JY, Choi SW, Kim SS (2010) Nanocomposite ZnO- SnO2 nanofibers synthesized by electrospinning method. Nanoscale Res Lett 5:747–752CrossRefGoogle Scholar
  102. 102.
    Neisiany RE, Lee JKY, Khorasani SN, Bagheri R, Ramakrishna S (2017) Facile strategy toward fabrication of highly responsive self-healing carbon/epoxy composites via incorporation of healing agents encapsulated in poly(methylmethacrylate) nanofiber shell. J Ind Eng Chem 59:456–466.  https://doi.org/10.1016/j.jiec.2017.11.007CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Balaji Institute of Pharmaceutical SciencesNarsampet, WarangalIndia
  2. 2.Department of Materials and Chemistry (MACH)VrijeUniversiteit Brussel (VUB)BrusselsBelgium
  3. 3.Chemistry Departments, Faculty of ScienceHelwan UniversityCairoEgypt
  4. 4.West Zone Central Drugs Standards Control OrganizationMumbaiIndia
  5. 5.Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRSUniv MontpellierMontpellierFrance

Personalised recommendations