Advertisement

Design of Heterogeneities and Interfaces with Nanofibers in Fuel Cell Membranes

  • Marta Zatoń
  • Sara Cavaliere
  • Deborah J. Jones
  • Jacques Rozière
Living reference work entry

Abstract

Many fuel cell membranes are highly heterogeneous systems comprising mechanical and chemical reinforcing components, including porous polymer sheets, nanofibers or nanoparticles, as well as radical scavengers or hydrogen peroxide decomposition catalysts. In the last 10 years, great attention has been devoted to 1D nanomaterials obtained by electrospinning. Several chemistries and compositions from aliphatic or aromatic polymers to metal oxides and phosphates and morphologies from nanofibers to nanotubes have been employed to prepare nanocomposite membranes. Despite the significant advances realized, further improvements in ionomer membrane durability under operation are still required. In particular, it is crucial to control the heterogeneity induced by the nanofiber component and to strengthen the interface between them and the matrix. Specific interactions have been demonstrated to improve the fiber/matrix interface with overall improvement of dimensional and mechanical properties. In this chapter we review the different approaches to fuel cell membrane reinforcement based on electrospun polymers and inorganic nanofibers.

Keywords

Fuel cell Proton exchange membrane Proton conductivity Electrospinning Ionomer Composite membrane 

Abbreviations

(s)PAES

(Sulfonated) Poly(arylene ether sulfone)

(s)PEEK

(Sulfonated) Poly(ether ether ketone)

(s)PEEKK

(Sulfonated) Poly(ether ether ketone ketone)

(s)PES

(Sulfonated) Polyethersulfone

(s)PFEK

(Sulfonated) Poly(fluorenyl ether ketone)

(s)PI

(Sulfonated) Polyimide

(s)PPESK

(Sulfonated) Poly(phthalazinone ether sulfone ketone)

(s)PSU

(Sulfonated) Polysulfone

1D

One-dimensional

3D

Three-dimensional

ADL

Acid doping level

BPPO

Bromomethylated polyphenylene oxide

CDP

Cesium dihydrogen phosphate

CNF

Carbon nanofibers

CNT

Carbon nanotubes

C-PAMPS

Poly(2-acrylamido-2-methylpropane-sulfonic acid)

Cys

Cysteine

DMAc

Dimethylacetamide

DMD

Direct membrane deposition

DMF

Dimethylformamide

DMFC

Direct methanol fuel cell

DMSO

Dimethyl sulfoxide

EW

Equivalent weight

FER

Fluoride emission rate

Gly

Glycine

LSC

Long side-chain

Lys

Lysine

MEA

Membrane electrode assembly

MW

Molecular weight

NT

Nanotubes

OCV

Open-circuit voltage

PA

Phosphoric acid

PAA

Polyacrylic acid

PAN

Polyacrylonitrile

PBI

Polybenzimidazole

PBz

Polybenzoxazine

PEI

Polyetherimide

PEMFC

Proton exchange membrane fuel cells

PEO

Polyethylene oxide

PFSA

Perfluorosulfonic acid

PPA

Polyphosphoric acid

PPSU

Polyphenylsulfone

PTFE

Poly tetrafluoroethylene

PVA

Polyvinyl alcohol

PVB

Polyvinyl butyral

PVDF

Poly vinylidene fluoride

PVDF-HFP

Polyvinylidene fluoride-hexafluoropropylene

PVP

Polyvinylpyrrolidone

RH

Relative humidity

SEM

Scanning electron microscopy

Ser

Serine

sPOSS

Sulfonated polyhedral oligomeric silsesquioxane

sPPO

Sulfonated poly(phenyleneoxide)

sPS

Sulfonated polystyrene

SSC

Short side-chain

sZrO2

Sulfonated zirconia

TEM

Transmission electron microscopy

TEOS

Tetraethylorthosilicate

Tg

Glass transition temperature

vol%

Volume percent

wt%

Weight percent

ZCCH

Zinc-aminotriazolato-oxalate

ZrP

Zirconium phosphate

Notes

Acknowledgments

Funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement n. 306682 and from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671465 VOLUMETRIQ is gratefully acknowledged. The Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme.

References

  1. 1.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951.  https://doi.org/10.1021/cr050182l CrossRefGoogle Scholar
  2. 2.
    De Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22.  https://doi.org/10.1002/fuce.200700053 CrossRefGoogle Scholar
  3. 3.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007.  https://doi.org/10.1016/j.apenergy.2010.09.030 CrossRefGoogle Scholar
  4. 4.
    Zatoń M, Rozière J, Jones D (2017) Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review. Sustain Energy Fuels:409–438.  https://doi.org/10.1039/C7SE00038C
  5. 5.
    Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238.  https://doi.org/10.1016/j.jpowsour.2007.03.044 CrossRefGoogle Scholar
  6. 6.
    Jones DJ, Rozière J (2001) Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Membr Sci 185:41–58.  https://doi.org/10.1016/S0376-7388(00)00633-5 CrossRefGoogle Scholar
  7. 7.
    Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555.  https://doi.org/10.1146/annurev.matsci.33.022702.154657 CrossRefGoogle Scholar
  8. 8.
    Jones DJ (2012) Membrane materials for polymer electrolyte fuel cells. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane direct methanol fuel cell Technology. Woodhead Publishing Ltd., Cambridge, UK, pp 27–55Google Scholar
  9. 9.
    Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191.  https://doi.org/10.1039/C4EE01303D CrossRefGoogle Scholar
  10. 10.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384.  https://doi.org/10.1016/j.ijhydene.2010.05.017 CrossRefGoogle Scholar
  11. 11.
    Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications – a review. J Membr Sci 259:10–26.  https://doi.org/10.1016/j.memsci.2005.01.035 CrossRefGoogle Scholar
  12. 12.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611.  https://doi.org/10.1021/cr020711a CrossRefGoogle Scholar
  13. 13.
    Wycisk R, Pintauro PPN, Park JJW (2014) New developments in proton conducting membranes for fuel cells. Curr Opin Chem Eng 4:71–78.  https://doi.org/10.1016/j.coche.2014.01.012 CrossRefGoogle Scholar
  14. 14.
    Thiam HS, Daud WRW, Kamarudin SK, Mohammad AB, Kadhum AAH, Loh KS, Majlan EH (2011) Overview on nanostructured membrane in fuel cell applications. Int J Hydrog Energy 36:3187–3205.  https://doi.org/10.1016/j.ijhydene.2010.11.062 CrossRefGoogle Scholar
  15. 15.
    Savadogo O (2004) Emerging membranes for electrochemical systems: part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161.  https://doi.org/10.1016/j.jpowsour.2003.09.043 CrossRefGoogle Scholar
  16. 16.
    Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Fuel cells I. Springer, Berlin, pp 219–264CrossRefGoogle Scholar
  17. 17.
    Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154.  https://doi.org/10.1146/annurev.matsci.33.022702.154702 CrossRefGoogle Scholar
  18. 18.
    Wang J-T, Savinell RF, Wainright J, Litt M, Yu H (1996) A fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 41:193–197.  https://doi.org/10.1016/0013-4686(95)00313-4 CrossRefGoogle Scholar
  19. 19.
    Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288.  https://doi.org/10.1016/S0013-4686(97)10031-7 CrossRefGoogle Scholar
  20. 20.
    Sood R, Iojoiu C, Espuche E, Gouanve F, Gebel G, Mendil-jakani H, Lyonnard S, Jestin J (2012) Proton conducting ionic liquid doped Nafion membranes: nano-structuration, transport properties and water sorption. J Phys Chem C 116:24413–24423.  https://doi.org/10.1021/jp306626y CrossRefGoogle Scholar
  21. 21.
    Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915.  https://doi.org/10.1021/cm0310519 CrossRefGoogle Scholar
  22. 22.
    Sood R, Iojoiu C, Espuche E, Gouanvé F, Mendil-Jakani H, Lyonnard S (2015) Influence of different perfluorinated anion based Ionic liquids on the intrinsic properties of Nafion®. J Membr Sci 495:445–456.  https://doi.org/10.1016/j.memsci.2015.07.006 CrossRefGoogle Scholar
  23. 23.
    Wang C, Duscher G, Paddison SJ (2015) Characterization of chain conformations in perfluorosulfonic acid membranes using electron energy loss spectroscopy. RSC Adv 5:2368–2373.  https://doi.org/10.1039/C4RA10012C CrossRefGoogle Scholar
  24. 24.
    Berrod Q, Lyonnard S, Guillermo A, Ollivier J, Frick B, Manseri A, Améduri B, Gébel G (2015) Nanostructure and transport properties of proton conducting self-assembled Perfluorinated surfactants: a bottom-up approach toward PFSA fuel cell membranes. Macromolecules 48:6166–6176.  https://doi.org/10.1021/acs.macromol.5b00770 CrossRefGoogle Scholar
  25. 25.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585.  https://doi.org/10.1021/cr0207123 CrossRefGoogle Scholar
  26. 26.
    Luo X, Holdcroft S, Mani A, Zhang Y, Shi Z (2011) Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network. Phys Chem Chem Phys 13:18055–18062.  https://doi.org/10.1039/C1CP22559F CrossRefGoogle Scholar
  27. 27.
    Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104.  https://doi.org/10.1021/acs.chemrev.6b00159 CrossRefGoogle Scholar
  28. 28.
    Rao V, Kluy N, Ju W, Stimming U (2015) Proton-conducting membranes for fuel cells. In: Handbook of membrane separations: chemical, pharmaceutical, food and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 567–614Google Scholar
  29. 29.
    Bahar B, Hobson AR, Kolde JA, Zuckerbrod D, Bahar B, Hobson AR, Kolde JA, Zuckerbrod D (1996) Ultra-thin integral composite membraneGoogle Scholar
  30. 30.
    Trogadas P, Parrondo J, Ramani V (2012) CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes. ACS Appl Mater Interfaces.  https://doi.org/10.1021/am3016069
  31. 31.
    Zatoń M, Rozière J, Jones DJ (2017) Mitigation of PFSA membrane chemical degradation using composite cerium oxide-PFSA nanofibres. J Mater Chem A.  https://doi.org/10.1039/c6ta10977b
  32. 32.
    Economou NJ, Barnes AM, Wheat AJ, Schaberg MS, Hamrock SJ, Buratto SK (2015) Investigation of humidity dependent surface morphology and proton conduction in multi-acid side chain membranes by conductive probe atomic force microscopy. J Phys Chem B 119:14280–14287.  https://doi.org/10.1021/acs.jpcb.5b07255 CrossRefGoogle Scholar
  33. 33.
    Puskar L, Ritter E, Schade U, Yandrasits M, Hamrock SJ, Schaberg M, Aziz EF (2017) Infrared dynamics study of thermally treated perfluoroimide acid proton exchange membranes. Phys Chem Chem Phys 19:626–635.  https://doi.org/10.1039/C6CP06627E CrossRefGoogle Scholar
  34. 34.
    Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. Adv Polym Sci 215:219–264.  https://doi.org/10.1007/12_2008_150 Google Scholar
  35. 35.
    Sambandam S, Ramani V (2007) SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. J Power Sources 170:259–267.  https://doi.org/10.1016/j.jpowsour.2007.04.026 CrossRefGoogle Scholar
  36. 36.
    Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, Mann J, Kirby B, Gatto L, Velo-Simpson M, Leahy J, Srimvasan S, Benziger JB, Bocarsly AB (2006) Function and characterization of metal oxide-nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells. Chem Mater 18:2238–2248.  https://doi.org/10.1021/cm051781b CrossRefGoogle Scholar
  37. 37.
    Chen Z, Holmberg B, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675.  https://doi.org/10.1021/cm060841q CrossRefGoogle Scholar
  38. 38.
    Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, Sganappa M (2007) Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52:8125–8132CrossRefGoogle Scholar
  39. 39.
    Di Noto V, Gliubizzi R, Negro E, Vittadello M, Pace G (2007) Hybrid inorganic–organic proton conducting membranes based on Nafion and 5wt.% of MxOy (M = Ti, Zr, Hf, Ta and W). Electrochim Acta 53:1618–1627.  https://doi.org/10.1016/j.electacta.2007.05.009 CrossRefGoogle Scholar
  40. 40.
    Laberty-Robert C, Vallé K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961.  https://doi.org/10.1039/c0cs00144a CrossRefGoogle Scholar
  41. 41.
    Mittelsteadt C, Willey J (2009) Dimensionally stable MembraneTM for high pressure electrolyzers. In: 7th international energy conversion engineering conference, American Institute of Aeronautics and Astronautics, Reston, pp 1–14Google Scholar
  42. 42.
    Haufe S, Stimming U (2001) Proton conducting membranes based on electrolyte filled microporous matrices. J Membr Sci 185:95–103.  https://doi.org/10.1016/S0376-7388(00)00637-2 CrossRefGoogle Scholar
  43. 43.
    Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785.  https://doi.org/10.1039/c1ee02201f CrossRefGoogle Scholar
  44. 44.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221.  https://doi.org/10.1039/b809074m CrossRefGoogle Scholar
  45. 45.
    Sood R, Cavaliere S, Jones DJ, Rozière J (2016) Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 26:729–745.  https://doi.org/10.1016/j.nanoen.2016.06.027 CrossRefGoogle Scholar
  46. 46.
    Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley VCH, WeinheimCrossRefGoogle Scholar
  47. 47.
    Subianto S, Cornu D, Cavaliere S (2015) Fundamentals of electrospinning. In: Cavaliere S (ed) Electrospinning advance energy and environmental applications. CRC Press, Boca Raton, pp 1–27Google Scholar
  48. 48.
    Junoh H, Jaafar J, Mohd Norddin MNA, Ismail AF, Othman MHD, Rahman MA, Yusof N, Wan Salleh WN, Ilbeygi H (2014) A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell. J Nanomater 2015:1–16.  https://doi.org/10.1155/2015/690965
  49. 49.
    Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. In: Scherer GG (ed) Fuel cells I. Springer, Berlin, pp 219–264CrossRefGoogle Scholar
  50. 50.
    Kerres JA (2001) Developement of ionomer membranes for fuel cells. J Membr Sci 185:3–27CrossRefGoogle Scholar
  51. 51.
    Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM (2012) Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chem Rev.  https://doi.org/10.1021/cr200424d
  52. 52.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic–inorganic composite polymer electrolyte membranes preparation properties fuel cell applications. Springer, Cham, pp 311–325CrossRefGoogle Scholar
  53. 53.
    Thiam HS, Daud WRW, Kamarudin SK, Mohamad AB, Kadhum AAH, Loh KS, Majlan EH (2013) Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications. Int J Hydrog Energy 38:9474–9483.  https://doi.org/10.1016/j.ijhydene.2012.11.141 CrossRefGoogle Scholar
  54. 54.
    Shami Z, Sharifi-Sanjani N, Khanyghma B, Farjpour S, Fotouhi A (2014) Ordered exfoliated silicate platelets architecture: hydrogen bonded poly(acrylic acid)-poly(ethylene oxide)/Na-montmorillonite complex nanofibrous membranes prepared by electrospinning technique. Rsc Adv 4:40892–40897.  https://doi.org/10.1039/C4ra05769d CrossRefGoogle Scholar
  55. 55.
    Kim T-E, Juon SM, Park JH, Shul Y-G, Cho KY (2014) Silicon carbide fiber-reinforced composite membrane for high-temperature and low-humidity polymer exchange membrane fuel cells. Int J Hydrog Energy 39:16474–16485.  https://doi.org/10.1016/j.ijhydene.2014.04.213 CrossRefGoogle Scholar
  56. 56.
    Subianto S, Donnadio A, Cavaliere S, Pica M, Casciola M, Jones DJ, Rozière J (2014) Reactive coaxial electrospinning of ZrP/ZrO2 nanofibres. J Mater Chem A 2:13359.  https://doi.org/10.1039/C4TA01383B CrossRefGoogle Scholar
  57. 57.
    Lim J-M, Won J-H, Lee H-J, Hong YT, Lee M-S, Ko CH, Lee S-Y (2012) Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. J Mater Chem 22:18550.  https://doi.org/10.1039/c2jm33406b CrossRefGoogle Scholar
  58. 58.
    Lee C, Jo SM, Choi J, Baek KY, Truong YB, Kyratzis IL, Shul YG (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48:3665–3671.  https://doi.org/10.1007/s10853-013-7162-7 CrossRefGoogle Scholar
  59. 59.
    Kim YM, Park KW, Choi JH, Park IS, Sung YE (2003) A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochem Commun 5:571–574.  https://doi.org/10.1016/S1388-2481(03)00130-9 CrossRefGoogle Scholar
  60. 60.
    Wang H, Li X, Zhuang X, Cheng B, Wang W, Kang W, Shi L, Li H (2017) Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources 340:201–209.  https://doi.org/10.1016/j.jpowsour.2016.11.072 CrossRefGoogle Scholar
  61. 61.
    Lee J-R, Kim N-Y, Lee M-S, Lee S-Y (2011) SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells. J Membr Sci 367:265–272.  https://doi.org/10.1016/j.memsci.2010.11.004 CrossRefGoogle Scholar
  62. 62.
    Lee HH-J, Kim J-HJ, Won J-HJ, Lim J-M, Hong YT, Lee S-Y (2013) Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells. ACS Appl Mater Interfaces 5:5034–5043.  https://doi.org/10.1021/am400836h CrossRefGoogle Scholar
  63. 63.
    Yao Y, Guo B, Ji L, Jung K-H, Lin Z, Alcoutlabi M, Hamouda H, Zhang X (2011) Highly proton conductive electrolyte membranes: fiber-induced long-range ionic channels. Electrochem Commun 13:1005–1008.  https://doi.org/10.1016/j.elecom.2011.06.028 CrossRefGoogle Scholar
  64. 64.
    Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744CrossRefGoogle Scholar
  65. 65.
    Ketpang K, Son B, Lee D, Shanmugam S (2015) Porous zirconium oxide nanotube modified Nafion composite electrolyte membrane for polymer electrolyte membrane fuel cells operated under dry conditions. J Membr Sci 488:154–165.  https://doi.org/10.1016/j.memsci.2015.03.096 CrossRefGoogle Scholar
  66. 66.
    Ketpang K, Oh K, Lim S-C, Shanmugam S (2016) Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions. J Power Sources 329:441–449.  https://doi.org/10.1016/j.jpowsour.2016.08.086 CrossRefGoogle Scholar
  67. 67.
    Goñi-Urtiaga A, Scott K, Cavaliere S, Jones DJ, Roziére J (2013) A new fabrication method of an intermediate temperature proton exchange membrane by the electrospinning of CsH2PO4. J Mater Chem A 1:10875–10880.  https://doi.org/10.1039/c3ta11851g CrossRefGoogle Scholar
  68. 68.
    Di Y, Yang W, Li X, Zhao Z, Wang M, Dai J (2014) Preparation and characterization of continuous carbon nanofiber-supported SPEEK composite membranes for fuel cell application. RSC Adv 4:52001–52007.  https://doi.org/10.1039/C4RA06976E CrossRefGoogle Scholar
  69. 69.
    Liu X, Yang Z, Zhang Y, Li C, Dong J, Liu Y, Cheng H (2017) Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. Int J Hydrog Energy 42:10275–10284.  https://doi.org/10.1016/j.ijhydene.2017.02.128 CrossRefGoogle Scholar
  70. 70.
    Choi J, Lee C, Hawkins SC, Huynh CP, Park J, Jeon Y, Truong YB, Kyratzis IL, Shul Y-G (2014) Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells graphical abstract spinning of CNTs is more robust than SPEEK alone and outperforms SPEEK and Nafion 212.  https://doi.org/10.1039/c4ra03117b
  71. 71.
    Dos Santos L, Rose S, Sel O, Maréchal M, Perrot H, Laberty-Robert C (2016) Electrospinning a versatile tool for designing hybrid proton conductive membrane. J Membr Sci.  https://doi.org/10.1016/j.memsci.2016.04.002
  72. 72.
    Maneeratana V, Bass JD, Azaïs T, Patissier A, Vallé K (2013) Fractal inorganic − organic interfaces in hybrid membranes for efficient proton transport. Adv Funct Mater 23:2872–2880CrossRefGoogle Scholar
  73. 73.
    Zatoń M, Jones D, Rozière J (2014) Mitigation of PEM fuel cell electrolyte degradation with metal Oxide/Nafion nanofiber interlayers. ECS Trans.  https://doi.org/10.1149/06123.0015ecst
  74. 74.
    Li J; Wang K; Yang Y (2017) Electrospun nanofiber webs for membrane reinforcement in fuel cells. Patent.  https://doi.org/10.1016/B978-0-444-59530-0.00011-3
  75. 75.
    Breitwieser M, Klose C, Hartmann A, Büchler A, Klingele M, Vierrath S, Zengerle R, Thiele S (2017) Cerium oxide decorated polymer nanofibers as effective membrane reinforcement for durable, high-performance fuel cells. Adv Energy Mater 7:1602100.  https://doi.org/10.1002/aenm.201602100 CrossRefGoogle Scholar
  76. 76.
    Li X, Hao X, Xu D, Zhang G, Zhong S, Na H, Wang D (2006) Fabrication of sulfonated poly(ether ether ketone ketone) membranes with high proton conductivity. J Membr Sci 281:1–6.  https://doi.org/10.1016/j.memsci.2006.06.002 CrossRefGoogle Scholar
  77. 77.
    Dong B, Gwee L, Salas-De La Cruz D, Winey KI, Elabd YA (2010) Super proton conductive high-purity Nafion nanofibers. Nano Lett.  https://doi.org/10.1021/nl102581w
  78. 78.
    Pan C, Wu H, Wang C, Wang B, Zhang L, Cheng Z, Hu P, Pan W, Zhou Z, Yang X, Zhu J (2008) Nanowire-based high-performance “Micro Fuel Cells”: one nanowire, one fuel cell. Adv Mater 20:1644–1648.  https://doi.org/10.1002/adma.200700515 CrossRefGoogle Scholar
  79. 79.
    Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328.  https://doi.org/10.1021/nl1007079 CrossRefGoogle Scholar
  80. 80.
    Takemori R, Ito G, Tanaka M, Kawakami H (2014) Ultra-high proton conduction in electrospun sulfonated polyimide nanofibers. RSC Adv 4:20005–20009.  https://doi.org/10.1039/c4ra02155j CrossRefGoogle Scholar
  81. 81.
    Tamura T, Takemori R, Kawakami H (2012) Proton conductive properties of composite membranes containing uniaxially aligned ultrafine electrospun polyimide nanofiber. J Power Sources 217:135–141.  https://doi.org/10.1016/j.jpowsour.2012.05.118 CrossRefGoogle Scholar
  82. 82.
    Fennessey SF, Farris RJ (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf) 45:4217–4225.  https://doi.org/10.1016/j.polymer.2004.04.001 CrossRefGoogle Scholar
  83. 83.
    Kakade MV, Givens S, Gardner K, Lee KH, Chase DB, Rabolt JF (2007) Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc 129:2777–2782.  https://doi.org/10.1021/ja065043f CrossRefGoogle Scholar
  84. 84.
    Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S (2008) Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc 130:15460–15466.  https://doi.org/10.1021/ja804185s CrossRefGoogle Scholar
  85. 85.
    Liu Y, Pellerin C (2006) Highly oriented electrospun fibers of self-assembled inclusion complexes of poly (ethylene oxide) and urea. Macromolecules 39:8886–8888.  https://doi.org/10.1021/ma0625408 CrossRefGoogle Scholar
  86. 86.
    Richard-Lacroix M, Pellerin C (2013) Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46:9473–9493.  https://doi.org/10.1021/ma401681m CrossRefGoogle Scholar
  87. 87.
    Sanders EH, McGrady K, Wnek GE, Edmondson C, Mueller JM, Fontanella JJ, Suarez S, Greenbaum SG (2004) Characterization of electrosprayed Nafion films. J Power Sources 129:55–61.  https://doi.org/10.1016/j.jpowsour.2003.11.020 CrossRefGoogle Scholar
  88. 88.
    Snyder JD, Elabd YA (2009) Nafion nanofibers and their effect on polymer electrolyte membrane fuel cell performance. J Power Sources 186:385–392.  https://doi.org/10.1016/j.jpowsour.2008.10.039 CrossRefGoogle Scholar
  89. 89.
    Jiang S, Xia K-QQ, Xu GG (2001) Effect of additives on self-assembling behavior of Nafion in aqueous media. Macromolecules 34:7783–7788.  https://doi.org/10.1021/ma010124b CrossRefGoogle Scholar
  90. 90.
    Shenoy S, Bates W, Frisch H, Wnek G (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer (Guildf) 46:3372–3384.  https://doi.org/10.1016/j.polymer.2005.03.011 CrossRefGoogle Scholar
  91. 91.
    Song T, Chen Z, He H, Liu Y, Liu Y, Ramakrishna S (2015) Orthogonal design study on factors affecting the diameter of perfluorinated sulfonic acid nanofibers during electrospinning. J Appl Polym Sci 132:41755.  https://doi.org/10.1002/app.41755 Google Scholar
  92. 92.
    Choi J, Lee K, Wycisk R, Pintauro PN, Mather PT (2010) Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers. J Mater Chem 20:6282–6290CrossRefGoogle Scholar
  93. 93.
    Laforgue A, Robitaille L, Mokrini A, Ajji A (2007) Fabrication and characterization of ionic conducting nanofibers. Macromol Mater Eng 292:1229–1236.  https://doi.org/10.1002/mame.200700200 CrossRefGoogle Scholar
  94. 94.
    Zhao J, Yuan WZ, Xu A, Ai F, Lu Y, Zhang Y (2011) Perfluorinated sulfonic acid ionomer/poly(N-vinylpyrrolidone) nanofiber membranes: electrospinning fabrication, water stability, and metal ion removal applications. React Funct Polym 71:1102–1109.  https://doi.org/10.1016/j.reactfunctpolym.2011.08.007 CrossRefGoogle Scholar
  95. 95.
    Bajon R, Balaji S, Guo SM (2009) Electrospun Nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol 6:31004–31006CrossRefGoogle Scholar
  96. 96.
    Chen H, Snyder JD, Elabd Y a (2008) Electrospinning and solution properties of Nafion and poly (acrylic acid). Macromolecules 41:128–135CrossRefGoogle Scholar
  97. 97.
    Sharma DK, Shen J, Li F (2014) Reinforcement of Nafion into polyacrylonitrile (PAN) to fabricate them into nanofiber mats by electrospinning: characterization of enhanced mechanical and adsorption properties. RSC Adv 4:39110.  https://doi.org/10.1039/C4RA05103C CrossRefGoogle Scholar
  98. 98.
    Subianto S, Cavaliere S, Jones DJ, Rozière J (2013) Effect of side-chain length on the electrospinning of perfluorosulfonic acid ionomers. J Polym Sci Part A Polym Chem 51:118–128.  https://doi.org/10.1002/pola.26286 CrossRefGoogle Scholar
  99. 99.
    Subianto S, Cavaliere S, Jones DJ, Rozière J (2011) On electrospinning of PFSA: a comparison between long and short-side chain ionomers. ECS Trans 41:1517–1520.  https://doi.org/10.1149/1.3635682 CrossRefGoogle Scholar
  100. 100.
    Lee KM, Choi J, Wycisk R, Pintauro PN, Mather P (2009) Nafion nanofiber membranes. ECS Trans 25:1451–1458.  https://doi.org/10.1149/1.3210701 CrossRefGoogle Scholar
  101. 101.
    Ballengee JB, Pintauro PN (2011) Morphological control of electrospun Nafion nanofiber Mats. J Electrochem Soc 158:B568–B572.  https://doi.org/10.1149/1.3561645 CrossRefGoogle Scholar
  102. 102.
    Subramanian C, Weiss R a, Shaw MT (2010) Electrospinning and characterization of highly sulfonated polystyrene fibers. Polymer (Guildf) 51:1983–1989.  https://doi.org/10.1016/j.polymer.2010.02.052 CrossRefGoogle Scholar
  103. 103.
    Roddecha S, Dong Z, Wu Y, Anthamatten M (2012) Mechanical properties and ionic conductivity of electrospun quaternary ammonium ionomers. J Membr Sci 389:478–485.  https://doi.org/10.1016/j.memsci.2011.11.016 CrossRefGoogle Scholar
  104. 104.
    Choi J, Lee KMK, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41:4569–4572.  https://doi.org/10.1021/ma800551w CrossRefGoogle Scholar
  105. 105.
    Lu PP, Xu ZL, Yang H, Wei YM, Xu HT (2012) Effects of ethanol and isopropanol on the structures and properties of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning. J Polym Res.  https://doi.org/10.1007/s10965-012-9854-0
  106. 106.
    Wu B, Pan J, Ge L, Wu L, Wang H, Xu T (2014) Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci Rep 4:1–7.  https://doi.org/10.1038/srep04334 Google Scholar
  107. 107.
    Boonpoo-nga R, Sriring M, Nasomjai P, Martwiset S (2014) Electrospun fibres from polyvinyl alcohol, poly(styrene sulphonic acid-co-maleic acid), and imidazole for proton exchange membranes. ScienceAsia 40:232.  https://doi.org/10.2306/scienceasia1513-1874.2014.40.232 CrossRefGoogle Scholar
  108. 108.
    Sadrjahani M, Gharehaghaji AA, Javanbakht M (2017) Aligned electrospun sulfonated poly- etheretherketone nanofiber based proton exchange membranes for fuel cell applications. Polym Eng Sci 57:789–796.  https://doi.org/10.1002/pen.24453
  109. 109.
    Zhang S, He G, Gong X, Zhu X, Wu X, Sun X, Zhao X, Li H (2015) Electrospun nanofiber enhanced sulfonated poly (phthalazinone ether sulfone ketone) composite proton exchange membranes. J Membr Sci 493:58–65.  https://doi.org/10.1016/j.memsci.2015.06.021 CrossRefGoogle Scholar
  110. 110.
    Choi J, Wycisk R, Zhang W, Pintauro PN, Lee KM, Mather PT (2010) High conductivity perfluorosulfonic acid nanofiber composite fuel-cell membranes. ChemSusChem 3:1245–1248.  https://doi.org/10.1002/cssc.201000220 CrossRefGoogle Scholar
  111. 111.
    Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. J Electrochem Soc 157:B914.  https://doi.org/10.1149/1.3392294 CrossRefGoogle Scholar
  112. 112.
    Wang L, Zhu J, Zheng J, Zhang S, Dou L (2014) Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains. RSC Adv 4:25195.  https://doi.org/10.1039/c4ra02286f CrossRefGoogle Scholar
  113. 113.
    Won JH, Lee HJ, Lim JM, Kim JH, Hong YT, Lee SY (2014) Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology. J Membr Sci 450:235–241.  https://doi.org/10.1016/j.memsci.2013.09.019 CrossRefGoogle Scholar
  114. 114.
    Choi J, Lee C, Hawkins SC, Huynh CP, Park J, Jeon Y, Truong YB, Kyratzis IL, Shul Y-G, Caruso RA (2014) Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells. RSC Adv 4:32787–32790.  https://doi.org/10.1039/C4RA03117B CrossRefGoogle Scholar
  115. 115.
    Liu W, Wang SJ, Xiao M, Han DM, Meng YZ (2012) A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. Chem Commun 48:3415.  https://doi.org/10.1039/c2cc16952e CrossRefGoogle Scholar
  116. 116.
    Yao Y, Ji L, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang X (2011) Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. ACS Appl Mater Interfaces 3:3732–3737.  https://doi.org/10.1021/am2009184 CrossRefGoogle Scholar
  117. 117.
    Hasani-Sadrabadi MM, Shabani I, Soleimani M, Moaddel H (2011) Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. J Power Sources 196:4599–4603.  https://doi.org/10.1016/j.jpowsour.2011.01.002 CrossRefGoogle Scholar
  118. 118.
    Shabani I, Hasani-Sadrabadi MM, Haddadi-Asl V, Soleimani M (2011) Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. J Membr Sci 368:233–240.  https://doi.org/10.1016/j.memsci.2010.11.048 CrossRefGoogle Scholar
  119. 119.
    Subramanian C, Weiss R a, Shaw MT (2013) Fabrication and characterization of conductive nanofiber-based composite membranes. Ind Eng Chem Res 52:15088–15093.  https://doi.org/10.1021/ie402072e CrossRefGoogle Scholar
  120. 120.
    Mollá S, Compañ V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136.  https://doi.org/10.1016/j.memsci.2015.05.055 CrossRefGoogle Scholar
  121. 121.
    Ballengee JB, Pintauro PN (2013) Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats. J Membr Sci 442:187–195.  https://doi.org/10.1016/j.memsci.2013.04.023 CrossRefGoogle Scholar
  122. 122.
    Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328CrossRefGoogle Scholar
  123. 123.
    Reyes-Rodriguez JL, Solorza-Feria O, García-Bernabé A, Giménez E, Sahuquillo O, Compañ V (2016) Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Adv 6:56986–56999.  https://doi.org/10.1039/C6RA08228A CrossRefGoogle Scholar
  124. 124.
    Gong C, Liu H, Zhang B, Wang G, Cheng F, Zheng G, Wen S, Xue Z, Xie X (2017) High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J Membr Sci 535:113–121.  https://doi.org/10.1016/j.memsci.2017.04.037 CrossRefGoogle Scholar
  125. 125.
    Oroujzadeh M, Mehdipour-Ataei S, Esfandeh M (2015) Proton exchange membranes with microphase separated structure from dual electrospun poly(ether ketone) mats: producing ionic paths in a hydrophobic matrix. Chem Eng J 269:212–220.  https://doi.org/10.1016/j.cej.2015.01.088 CrossRefGoogle Scholar
  126. 126.
    Ballengee JB, Pintauro PN (2011) Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44:7307–7314.  https://doi.org/10.1021/ma201684j CrossRefGoogle Scholar
  127. 127.
    Ballengee JB, Haugen GM, Hamrock SJ, Pintauro PN (2013) Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J Electrochem Soc 160:F429–F435.  https://doi.org/10.1149/2.088304jes CrossRefGoogle Scholar
  128. 128.
    Nouel KM, Fedkiw PS (1998) Nafion®-based composite polymer electrolyte membranes. Electrochim Acta 43:2381–2387.  https://doi.org/10.1016/S0013-4686(97)10151-7 CrossRefGoogle Scholar
  129. 129.
    Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223.  https://doi.org/10.1016/S0376-7388(02)00503-3 CrossRefGoogle Scholar
  130. 130.
    Lin H-L, Yu TL, Huang L-N, Chen L-C, Shen K-S, Jung G-B (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19.  https://doi.org/10.1016/j.jpowsour.2005.02.016 CrossRefGoogle Scholar
  131. 131.
    Jang WG, Hou J, Byun HS (2011) Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application. Desalin Water Treat 34:315–320.  https://doi.org/10.5004/dwt.2011.2871 CrossRefGoogle Scholar
  132. 132.
    Choi SW, Fu Y-Z, Ahn YR, Jo SM, Manthiram A (2008) Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells. J Power Sources 180:167–171.  https://doi.org/10.1016/j.jpowsour.2008.02.042 CrossRefGoogle Scholar
  133. 133.
    Mollà S, Compañ V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200.  https://doi.org/10.1016/j.memsci.2011.02.001 CrossRefGoogle Scholar
  134. 134.
    Li H-Y, Liu Y-L (2014) Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A 2:3783.  https://doi.org/10.1039/c3ta14264g CrossRefGoogle Scholar
  135. 135.
    Shahgaldi S, Ghasemi M, Wan Daud WR, Yaakob Z, Sedighi M, Alam J, Ismail AF (2014) Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Process Technol 124:290–295.  https://doi.org/10.1016/j.fuproc.2014.03.015 CrossRefGoogle Scholar
  136. 136.
    Li HY, Lee YY, Lai JY, Liu YL (2014) Composite membranes of Nafion and poly(styrene sulfonic acid)-grafted poly(vinylidene fluoride) electrospun nanofiber mats for fuel cells. J Membr Sci 466:238–245.  https://doi.org/10.1016/j.memsci.2014.04.057 CrossRefGoogle Scholar
  137. 137.
    Mannarino MM, Liu DS, Hammond PT, Rutledge GC (2013) Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications. ACS Appl Mater Interfaces 5:8155–8164.  https://doi.org/10.1021/am402204v CrossRefGoogle Scholar
  138. 138.
    Yu DM, Yoon S, Kim TH, Lee JY, Lee J, Hong YT (2013) Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. J Membr Sci 446:212–219.  https://doi.org/10.1016/j.memsci.2013.06.028 CrossRefGoogle Scholar
  139. 139.
    Nah C, Jeong KU, Lee YS, Lee SH, Kader MMA, Lee HK, Ahn JH (2013) Polymer electrolyte membranes composed of an electrospun poly(vinylidene fluoride) fibrous mat in a poly(4-vinylpyridine) matrix. Polym Int 62:375–381.  https://doi.org/10.1002/pi.4311 CrossRefGoogle Scholar
  140. 140.
    Yu DM, Yoon S, Kim TH, Lee JY, Lee J, Hong YT (2014) Poly(amide-co-imide)-poly(trimellitic anhydride chloride-co-4,4′-methylenedianiline) nonwoven/sulfonated poly(arylene ether sulfone) composite membrane for proton exchange membrane fuel cells. Macromol Res 22:79–84.  https://doi.org/10.1016/j.memsci.2013.06.028 CrossRefGoogle Scholar
  141. 141.
    Jin J, Hao R, He X, Li G (2015) Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 0:1–7.  https://doi.org/10.1016/j.ijhydene.2015.04.075
  142. 142.
    Wycisk R, Chisholm J, Lee J, Lin J, Pintauro PN (2006) Direct methanol fuel cell membranes from Nafion–polybenzimidazole blends. J Power Sources 163:9–17.  https://doi.org/10.1016/j.jpowsour.2005.11.056 CrossRefGoogle Scholar
  143. 143.
    Giancola S, Reyes Carmona A, Dupont M, Cavaliere S, Jones D, Rozière J, Moukheiber E, Merlo L (2014) Nanocomposite PEM reinforced with electrospun polymer nanofibres for water electrolysis. Euro-mediterranean Hydrogen Technologies Conference (EmHyTeC 2014) – Taormina (Italy)Google Scholar
  144. 144.
    Cho KY, Jung HY, Choi NS, Sung SJ, Park JK, Choi JH, Sung YE (2005) A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ionics 176:3027–3030.  https://doi.org/10.1016/j.ssi.2005.09.048 CrossRefGoogle Scholar
  145. 145.
    Kim HJJ, Kim HJJ, Shul YG, Han HS (2004) Nafion-Nafion/polyvinylidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells. J Power Sources 135:66–71.  https://doi.org/10.1016/j.jpowsour.2004.04.001 CrossRefGoogle Scholar
  146. 146.
    Nasef MM, Zubir NA, Ismail AF, Dahlan KZM, Saidi H, Khayet M (2006) Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 156:200–210.  https://doi.org/10.1016/j.jpowsour.2005.05.053 CrossRefGoogle Scholar
  147. 147.
    Cho KY, Jung HY, Sung K, Kim WK, Sung SJ, Park JK, Choi JH, Sung YE (2006) Preparation and charateristics of Nafion membrane coated with a PVdF copolymer/recast Nafion blend for direct methanol fuel cell. J Power Sources 159:524–528.  https://doi.org/10.1016/j.jpowsour.2005.10.106 CrossRefGoogle Scholar
  148. 148.
    Song MK, Kim YT, Fenton JM, Russell Kunz H, Rhee HW (2003) Chemically-modified Nafion/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells. J Power Sources 117:14–21.  https://doi.org/10.1016/S0378-7753(03)00166-6 CrossRefGoogle Scholar
  149. 149.
    He Y, Zhang H, Li Y, Wang J, Ma L, Zhang W, Liu J (2015) Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. J Mater Chem A 3:21832–21841.  https://doi.org/10.1039/C5TA03601A CrossRefGoogle Scholar
  150. 150.
    Jones D, Rozière J, Subianto S, Cavaliere S, Burton S (2015) Reinforced ionomer membranes, fabrication and application in energy conversion devices US Patent 20170279142A1Google Scholar
  151. 151.
    Wang J, He Y, Zhao L, Li Y, Cao S, Zhang B, Zhang H (2015) Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions. J Membr Sci 482:1–12.  https://doi.org/10.1016/j.memsci.2015.02.015 CrossRefGoogle Scholar
  152. 152.
    He Y, Wang J, Zhang H, Zhang T, Zhang B, Cao S, Liu J (2014) Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J Mater Chem A 2:9548–9558.  https://doi.org/10.1039/c3ta15301k CrossRefGoogle Scholar
  153. 153.
    Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis through microwave-assisted copper-catalyzed click chemistry: a highly proton conducting high temperature membrane. ACS Appl Mater Interfaces 8:16897–16906.  https://doi.org/10.1021/acsami.6b02713 CrossRefGoogle Scholar
  154. 154.
    Sood R, Donnadio A, Giancola S, Kreisz A, Jones DJ, Rozière J, Cavaliere S (2016) 1,2,3-Triazole-functionalized polysulfone synthesis and application in proton exchange membranes for low and high temperature PEMFC. Meet Abstr MA2016-02:2605Google Scholar
  155. 155.
    Tanaka M, Takeda Y, Wakiya T, Wakamoto Y, Harigaya K, Ito T, Tarao T, Kawakami H (2017) Acid-doped polymer nanofiber framework: three-dimensional proton conductive network for high-performance fuel cells. J Power Sources 342:125–134.  https://doi.org/10.1016/j.jpowsour.2016.12.018 CrossRefGoogle Scholar
  156. 156.
    Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103.  https://doi.org/10.1016/j.progpolymsci.2016.06.006 CrossRefGoogle Scholar
  157. 157.
    Xu X, Li L, Wang H, Li X, Zhuang X (2015) Solution blown sulfonated poly(ether ether ketone) nanofiber–Nafion composite membranes for proton exchange membrane fuel cells. RSC Adv 5:4934–4940.  https://doi.org/10.1039/C4RA10898A CrossRefGoogle Scholar
  158. 158.
    Takemori R, Kawakami H (2010) Electrospun nanofibrous blend membranes for fuel cell electrolytes. J Power Sources 195:5957–5961.  https://doi.org/10.1016/j.jpowsour.2010.01.007 CrossRefGoogle Scholar
  159. 159.
    Makinouchi T, Tanaka M, Kawakami H (2017) Improvement in characteristics of a Nafion membrane by proton conductive nanofibers for fuel cell applications. J Membr Sci 530:65–72.  https://doi.org/10.1016/j.memsci.2017.02.018 CrossRefGoogle Scholar
  160. 160.
    Breitwieser M, Klose C, Klingele M, Hartmann A, Erben J, Cho H, Kerres J, Zengerle R, Thiele S (2017) Simple fabrication of 12 mm thin nanocomposite fuel cell membranes by direct electrospinning and printing. J Power Sources 337:137–144.  https://doi.org/10.1016/j.jpowsour.2016.10.094 CrossRefGoogle Scholar
  161. 161.
    Javakhishvili I, Dimitrov I, Tynelius O, Hales J, Jankova K, Hvilsted S (2017) Surface-initiated atom transfer radical polymerization from electrospun mats: an alternative to Nafion. Macromol Mater Eng 302:1600410.  https://doi.org/10.1002/mame.201600410 CrossRefGoogle Scholar
  162. 162.
    Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones DJ (2013) Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. J Power Sources 233:216–230.  https://doi.org/10.1016/j.jpowsour.2012.12.121 CrossRefGoogle Scholar
  163. 163.
    Mollà S, Compañ V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708.  https://doi.org/10.1016/j.jpowsour.2010.11.022 CrossRefGoogle Scholar
  164. 164.
    Lin H-L, Wang S-H (2014) Nafion/poly(vinyl alcohol) nano-fiber composite and Nafion/poly(vinyl alcohol) blend membranes for direct methanol fuel cells. J Membr Sci 452:253–262.  https://doi.org/10.1016/j.memsci.2013.09.039 CrossRefGoogle Scholar
  165. 165.
    Quartarone E (2011) Polymer fuel cells based on polybenzimidazole/H3PO4. Energy Environ Sci.  https://doi.org/10.1039/b000000x
  166. 166.
    Lin H-L, Wang S-H, Chiu C-K, Yu TL, Chen L-C, Huang C-C, Cheng T-H, Lin J-M (2010) Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells. J Membr Sci 365:114–122.  https://doi.org/10.1016/j.memsci.2010.08.045 CrossRefGoogle Scholar
  167. 167.
    Boaretti C, Pasquini L, Sood R, Giancola S, Donnadio A, Roso M, Modesti M, Cavaliere S (2018) Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J Membr Sci 545:66–74.  https://doi.org/10.1016/j.memsci.2017.09.055
  168. 168.
    Di Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P (2009) Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J Phys Chem B 113:7505–7512.  https://doi.org/10.1021/jp9006679 CrossRefGoogle Scholar
  169. 169.
    Maranesi B, Hou H, Polini R, Sgreccia E, Alberti G, Narducci R, Knauth P, Di Vona ML (2013) Cross-linking of sulfonated poly(ether ether ketone) by thermal treatment: how does the reaction occur? Fuel Cells 13:107–117.  https://doi.org/10.1002/fuce.201200010 CrossRefGoogle Scholar
  170. 170.
    Yun S-H, Woo J-J, Seo S-J, Wu L, Wu D, Xu T, Moon S-H (2011) Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J Membr Sci 367:296–305.  https://doi.org/10.1016/j.memsci.2010.11.017 CrossRefGoogle Scholar
  171. 171.
    Glipa X, Bonnet B, Mula B, Jones DJ, Rozière J (1999) Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem 9:3045–3049.  https://doi.org/10.1039/a906060j CrossRefGoogle Scholar
  172. 172.
    Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe E-W, Rogers D, Apple T, Benicewicz BC (2005) High-temperature polybenzimidazole fuel cell membranes via a sol – gel process. Chem Mater 17:5328–5333.  https://doi.org/10.1021/cm050831+ CrossRefGoogle Scholar
  173. 173.
    Kreisz A (2016) PhD thesis, Membranes PBI pour pile à combustible haute température, Université de Montpellier.Google Scholar
  174. 174.
    Nedellec Y, Donzel N, Kreisz A, Jones D, Rozière J (2015) Cross-linked phosphoric acid doped PBI membranes and their performance on operation as automotive range extender. ECS Meet Abstr MA2015-03:638Google Scholar
  175. 175.
    Li H-Y, Liu Y-L (2013) Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J Mater Chem A 1:1171–1178.  https://doi.org/10.1039/c2ta00270a CrossRefGoogle Scholar
  176. 176.
    Allegheny Science & Technology for the U.S. Department of Energy VTO (2016) 2016 Vehicle Technologies Office Annual Merit Review Results ReportGoogle Scholar
  177. 177.
    www.volumetriq.eu. Volume manufacturing of PEMFC stacks for transportation and in-line quality assurance

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marta Zatoń
    • 1
  • Sara Cavaliere
    • 1
  • Deborah J. Jones
    • 1
  • Jacques Rozière
    • 1
  1. 1.Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Agrégats Interfaces et Matériaux pour l’EnergieUniversité de MontpellierMontpellier Cedex 5France

Personalised recommendations