Biological Fibrillar Adhesives: Functional Principles and Biomimetic Applications

  • Stanislav N. GorbEmail author
  • Lars Heepe
Living reference work entry


Specific mechanisms of adhesion found in nature are discussed in the previous chapter (chapter “Bioadhesives”). One of the most discussed biological systems in the last decade are the so-called fibrillar adhesives of insects, spiders, and geckos. These systems are adapted for dynamic adhesion of animals during locomotion and, therefore, have some extraordinary properties, such as (1) directionality, (2) preload by shear, (3) quick detachment by peeling, (4) low dependence on the substrate chemistry, (5) reduced ability to contamination and self-cleaning, and (6) the absence or strong reduction of self-adhesion. In the present chapter, we review functional principles of such biological systems in various animal groups with an emphasis on insects and discuss their biomimetic potential. The data on ultrastructure and mechanics of materials of adhesive pads, movements during contact formation and breakage, the role of the fluid in the contact between the pad and substrate are presented here. The main goal is to demonstrate how a comparative experimental approach in studies of biological systems aids in the development of novel adhesive materials and systems. The microstructured adhesive systems, inspired by studies of biological systems of insects, spiders, and geckos, are also shortly reviewed.


Attachment Biomimetics Bioinspired surfaces Microstructure Fibrillar adhesives Dry adhesives Dynamic adhesion Reversible adhesion Bioadhesion Microfabrication Gecko Insect Spider 


  1. Alibardi L (1997) Ultrastructural and autoradiographic analysis of setae development in the embryonic pad lamellae of the lizard Anolis lineatopus. Ann Sci Nat Zool Biol Anim 18:51Google Scholar
  2. Arzt E, Gorb SN, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603CrossRefGoogle Scholar
  3. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R (2000) Adhesion force measurements on single gecko setae. Nature 405:681CrossRefGoogle Scholar
  4. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen M (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99:12252CrossRefGoogle Scholar
  5. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569CrossRefGoogle Scholar
  6. Autumn K, Gravish N, Wilkinson M, Santos D, Spenko M, Cutkosky M (2007) Frictional adhesion of natural and synthetic gecko setal arrays. In: Proceedings of 30th annual meeting adhesion society, Inc, The Adhesion Society, Blacksburg, VAGoogle Scholar
  7. Barnes WJP (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J Comp Physiol A 192:1179CrossRefGoogle Scholar
  8. Bauchhenss E (1979) Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphologie 93:99CrossRefGoogle Scholar
  9. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems. From nature to technical and medical application. Springer, Vienna, pp 111–152Google Scholar
  10. Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177CrossRefGoogle Scholar
  11. Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthrop Syst Phylogeny 64(1):3–25Google Scholar
  12. Borodich FM, Gorb EV, Gorb SN (2010) Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl Phys A Mater Sci Process 100:63CrossRefGoogle Scholar
  13. Breckwoldt WA, Daltorio K, Heepe L, Horchler AD, Gorb SN, Quinn R (2015) Walking inverted on ceilings with wheel-legs and micro-structured adhesives. In: Intelligent robots and systems (IROS), IEEE/RSJ international conference on. IEEE, Hamburg, Germany, pp 3308–3313Google Scholar
  14. Bullock JMR, Federle W (2011) The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula. Insect Sci 18:298CrossRefGoogle Scholar
  15. del Campo A, Greiner C, Arzt E (2007) Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23:10235CrossRefGoogle Scholar
  16. Chung JY, Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J R Soc Interface 2:55CrossRefGoogle Scholar
  17. Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466CrossRefGoogle Scholar
  18. Daltorio KA, Gorb SN, Peressadko A, Horchler AD, Ritzmann RE, Quinn RD (2005) A robot that climbs walls using micro-structured polymer feet. In: Proceedings of international conference on climbing and walking robots CLAWAR, London, UK, pp 131–138Google Scholar
  19. Davies J, Haq S, Hawke T, Sargent JP (2009) A practical approach to the development of a synthetic Gecko tape. Int J Adhes Adhes 29:380CrossRefGoogle Scholar
  20. Dening K, Heepe L, Afferrante L, Carbone G, Gorb SN (2014) Adhesion control by inflation: implications from biology to artificial attachment device. Appl Phys A Mater Sci Process 116:567CrossRefGoogle Scholar
  21. Edwards JS, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc Roy Ent Soc Lond A 45:1Google Scholar
  22. Eimüller T, Guttmann P, Gorb SN (2008) Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J Exp Biol 211:1958CrossRefGoogle Scholar
  23. Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci U S A 97:6568CrossRefGoogle Scholar
  24. England MW, Sato T, Yagihashi M, Hozumi A, Gorb SN, Gorb EV (2016) Surface roughness rather than surface chemistry essentially affects insect adhesion. Beistein J Nanotechnol 7:1471CrossRefGoogle Scholar
  25. Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611CrossRefGoogle Scholar
  26. Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100CrossRefGoogle Scholar
  27. Filippov AE, Popov VL, Gorb SN (2011) Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J Thero Biol 276:126MathSciNetCrossRefGoogle Scholar
  28. Gao H, Wang X, Yao H, Gorb SN, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275CrossRefGoogle Scholar
  29. Gaume L, Perret P, Gorb E, Gorb S, Labat J-J, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arth Struct Dev 33:103CrossRefGoogle Scholar
  30. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461CrossRefGoogle Scholar
  31. Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19:185CrossRefGoogle Scholar
  32. Geiselhardt SF, Federle W, Prüm B, Geiselhardt S, Lamm S, Peschke K (2010) Impact of chemical manipulation of tarsal liquids on attachment in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol 56:398CrossRefGoogle Scholar
  33. Gladun D, Gorb SN, Frantsevich LI (2009) Alternative tasks of the insect arolium with special reference to hymenoptera. In: Gorb SN (ed) Functional surfaces in biology – adhesion related phenomena, vol 2. Springer, Dordrecht/Heidelberg/London/New York, pp 67–103CrossRefGoogle Scholar
  34. Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc Roy Soc Lond B 265:747CrossRefGoogle Scholar
  35. Gorb SN (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc Roy Soc Lond B 267:1239CrossRefGoogle Scholar
  36. Gorb SN (2001) Attachment devices of insect cuticle. Springer, New YorkGoogle Scholar
  37. Gorb SN (2005) Uncovering insect stickiness: structure and properties of hairy attachment devices. Amer Ent 51:31CrossRefGoogle Scholar
  38. Gorb SN (2007) Smooth Attachment Devices in Insects: Functional Morphology and Biomechanics. Adv In Insect Phys 34:81CrossRefGoogle Scholar
  39. Gorb SN (2009) Adhesion in nature. In: Brockmann W, Geiß PL, Klingen J, Schröder B (eds) Adhesive bonding – materials, applications and technology. Wiley-VCH, Weinheim, pp 346–356Google Scholar
  40. Gorb SN (2010) Biological and biologically inspired attachment systems. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer Verlag, Berlin, pp 1525–1551CrossRefGoogle Scholar
  41. Gorb SN (2011) Biological fibrillar adhesives: functional principles and biomimetic applications. In: da Silva LFM, Öchsner A, Adams RD (eds) Handbook of adhesion technology, pp 1409–1436. doi: 10.1007/978-3-642-01169-6_54 CrossRefGoogle Scholar
  42. Gorb SN, Beutel RG (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530CrossRefGoogle Scholar
  43. Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13CrossRefGoogle Scholar
  44. Gorb EV, Gorb SN (2006) Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination hypothesis. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. Taylor & Francis, Boca Raton, pp 147–162CrossRefGoogle Scholar
  45. Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21:1175CrossRefGoogle Scholar
  46. Gorb SN, Varenberg M, Peressadko A, Tuma J (2007a) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4:271CrossRefGoogle Scholar
  47. Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007b) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:S117CrossRefGoogle Scholar
  48. Gorb EV, Hosoda N, Miksch C, Gorb SN (2010) Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. J R Soc Interface 7:1571CrossRefGoogle Scholar
  49. Gottlieb Binder GmbH & Co KG (2017)
  50. Greiner C, Arzt E, del Campo A (2009) Hierarchical Gecko - Like Adhesives. Adv Mater 21:479CrossRefGoogle Scholar
  51. Heepe L, Gorb SN (2014) Biologically inspired mushroom-shaped adhesive microstructures. Annu Rev Mater Res 44:173CrossRefGoogle Scholar
  52. Heepe L, Varenberg M, Itovich Y, Gorb SN (2011) Suction component in adhesion of mushroom-shaped microstructure. J R Soc Interface 8:585CrossRefGoogle Scholar
  53. Heepe L, Kovalev AE, Varenberg M, Tuma J, Gorb SN (2012) First mushroom-shaped adhesive microstructure: A review. Thero Appl Mech Lett 2:014008Google Scholar
  54. Heepe L, Kovalev AE, Filippov AE, Gorb SN (2013) Adhesion failure at 180 000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys Rev Lett 111:104301CrossRefGoogle Scholar
  55. Heepe L, Carbone G, Pierro E, Kovalev AE, Gorb SN (2014a) Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl Phys Lett 104:011906CrossRefGoogle Scholar
  56. Heepe L, Kovalev AE, Gorb SN (2014b) Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure. Beilstein J Nanotechnol 5:903CrossRefGoogle Scholar
  57. Heepe L, Wolff JO, Gorb SN (2016) Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein J Nanotechnol 7:1332CrossRefGoogle Scholar
  58. Heepe L, Raguseo S, Gorb SN (2017a) An experimental study of double-peeling mechanism inspired by biological adhesive systems. Appl Phys A Mater Sci Process 123:124CrossRefGoogle Scholar
  59. Heepe L, Petersen DS, Tölle L, Wolff JO, Gorb SN (2017b) Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates. Appl Phys A Mater Sci Process 123:34CrossRefGoogle Scholar
  60. Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307CrossRefGoogle Scholar
  61. Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318CrossRefGoogle Scholar
  62. Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2CrossRefGoogle Scholar
  63. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102:16293CrossRefGoogle Scholar
  64. Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35CrossRefGoogle Scholar
  65. Ishii S (1987) Adhesion of a Leaf Feeding Ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a Virtically Smooth Surface. Appl Entomol Zool 22:222CrossRefGoogle Scholar
  66. Israelachvili JN (1992) Intermolecular and surface forces: With Applications to Colloidal and Biological Systems, 2nd edn. Academic, LondonGoogle Scholar
  67. Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140CrossRefGoogle Scholar
  68. Jagota A, Hui C-Y (2011) Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater Sci Eng R Rep 72:253Google Scholar
  69. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301CrossRefGoogle Scholar
  70. Kampermann M, Kroner E, del Campo A, McMeeking RM, Arzt E (2010) Functional Adhesive Surfaces with “Gecko” Effect: The Concept of Contact Splitting. Adv Eng Mater 12:335CrossRefGoogle Scholar
  71. Kasem H, Varenberg M (2013) Effect of counterface roughness on adhesion of mushroom-shaped microstructure. J R Soc Interface 10:20130620CrossRefGoogle Scholar
  72. Kendall K (1975) Thin-film peeling-the elastic term. J Phys D Appl Phys 8:1449CrossRefGoogle Scholar
  73. Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733CrossRefGoogle Scholar
  74. Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1Google Scholar
  75. Kim S, Sitti M (2006) Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett 89:26911Google Scholar
  76. Kizilkan E, Heepe L, Gorb SN (2013) Underwater adhesion of mushroom-shaped adhesive microstructure: an air-entrapment effect. In: Biological and Biomimetic Adhesives: Challenges and Opportunities. RCS, Cambridge, pp 65–71Google Scholar
  77. Kizilkan E, Strueben J, Staubitz A, Gorb SN (2017) Bioinspired photocontrollable microstructured transport device. Sci Robotics 2:eaak9454CrossRefGoogle Scholar
  78. Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47CrossRefGoogle Scholar
  79. Kovalev AE, Varenberg M, Gorb SN (2012) Wet versus dry adhesion of biomimetic mushroom-shaped microstructures. Soft Matter 8:7560CrossRefGoogle Scholar
  80. Kwak MK, Pang C, Jeong HE, Kim HN, Yoon H, Jung HS, Suh KY (2011) Towards the next level of bioinspired dry adhesives: new designs and applications. Adv Funct Mater 21:3606CrossRefGoogle Scholar
  81. Langer MG, Ruppersberg JP, Gorb SN (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209CrossRefGoogle Scholar
  82. Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Tech 21:1281CrossRefGoogle Scholar
  83. Niederegger S, Gorb SN (2003) Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J Insect Physiol 49:611CrossRefGoogle Scholar
  84. Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223CrossRefGoogle Scholar
  85. Niederegger S, Gorb SN, Vötsch W (2001) Fly walking: a compromise between attachment and motion? In: Wisser A, Nachtigall W (eds) Technische Biologie und Bionik. 5. Bionik – Kongress, Dessau 2000. Gustav Fisher Verlag, Stuttgart/Jena/Lübeck/Ulm, pp 327–330Google Scholar
  86. Niewiarowski PH, Lopez S, Ge L, Hagan E, Dhinojwala A (2008) Sticky gecko feet: the role of temperature and humidity. PLoS One 3:e2192CrossRefGoogle Scholar
  87. Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159CrossRefGoogle Scholar
  88. Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci U S A 104:18595CrossRefGoogle Scholar
  89. Peisker H, Gorb SN (2012) Evaporation dynamics of tarsal liquid footprints in flies (Calliphora vicina) and beetles (Coccinella septempunctata). J Exp Biol 215:1266CrossRefGoogle Scholar
  90. Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun 4:1661CrossRefGoogle Scholar
  91. Peisker H, Heepe L, Kovalev AE, Gorb SN (2014) Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. J R Soc Interface 11:20140752CrossRefGoogle Scholar
  92. Pelletier Y, Smilowitz Z (1987) Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. Can Entomol 119:1139CrossRefGoogle Scholar
  93. Peressadko A, Gorb SN (2004a) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80:247CrossRefGoogle Scholar
  94. Peressadko A, Gorb SN (2004b) Surface profile and friction force generated by insects. In: Fortschritt-Berichte VDI, Boblan I, Bannasch R (eds) Surface profile and friction force generated by insects, vol 249[15]. VDI Verlag, Düsseldorf, pp 257–263Google Scholar
  95. Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614CrossRefGoogle Scholar
  96. Persson BNJ (2014) On the fractal dimension of rough surfaces. Tribol Lett 54:99CrossRefGoogle Scholar
  97. Persson BNJ, Gorb SN (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437CrossRefGoogle Scholar
  98. Popov VL (2010) Contact mechanics and friction: physical principles and applications. Springer-Verlag, BerlinzbMATHCrossRefGoogle Scholar
  99. Prowse MS, Wilkinson M, Puthoff JB, Mayer G, Autumn K (2011) Effects of humidity on the mechanical properties of gecko setae. Acta Biomater 7:733CrossRefGoogle Scholar
  100. Pugno NM (2011) The theory of multiple peeling. Int J Fract 171:185CrossRefGoogle Scholar
  101. Pugno NM, Gorb SN (2009) Functional mechanism of biological adhesive systems described by multiple peeling approach. In: Proceedings of the 12th international conference on fracture, July 1217, OttawaGoogle Scholar
  102. Puthoff JB, Prowse MS, Wilkinson M, Autumn K (2010) Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 213:3699CrossRefGoogle Scholar
  103. Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143CrossRefGoogle Scholar
  104. Rizzo NW, Gardner KH, Walls D, Keiper-Hrynko JNM, Ganzke TS, Hallahan DL (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441CrossRefGoogle Scholar
  105. Röll B (1995) Epidermal fine structure of the toe tips of Sphaerodactylus cinereus (Reptilia, Gekkonidae). J Zool 235:289CrossRefGoogle Scholar
  106. Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271CrossRefGoogle Scholar
  107. Russell AP (1975) A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J Zool (Lond) 176:437CrossRefGoogle Scholar
  108. Sameoto D, Menon C (2010) Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Mater Struct 19:103001CrossRefGoogle Scholar
  109. Schargott M (2009) A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures. Bioinspir Biomim 4(026002):9Google Scholar
  110. Scherge M, Gorb SN (2001) Biological micro- and nanotribology: nature’s solutions. Springer, BerlinCrossRefGoogle Scholar
  111. Schleich HH, Kastle W (1986) Ultrastrukturen an Gecko-Zehen (reptilia: sauria: gekkonidae). Amphibia-Reptilia 7:141CrossRefGoogle Scholar
  112. Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol 17:1055CrossRefGoogle Scholar
  113. Smith JM, Barnes WJP, Downie JR, Ruxton GD (2006) Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J Comp Physiol A 192:1193CrossRefGoogle Scholar
  114. Spolenak R, Gorb SN, Gao H, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc Lond A 461:305CrossRefGoogle Scholar
  115. Stork NE (1980a) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91Google Scholar
  116. Stork NE (1980b) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linnean Soc 68:173CrossRefGoogle Scholar
  117. Stork NE (1983) A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17:829CrossRefGoogle Scholar
  118. Tang T, Hui CY (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2:505CrossRefGoogle Scholar
  119. Varenberg M, Gorb SN (2008a) A beetle-inspired solution for underwater adhesion. J R Soc Interface 5:383CrossRefGoogle Scholar
  120. Varenberg M, Gorb SN (2008b) Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J R Soc Interface 5:785CrossRefGoogle Scholar
  121. Varenberg M, Gorb SN (2008c) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4:721CrossRefGoogle Scholar
  122. Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269CrossRefGoogle Scholar
  123. Varenberg M, Murarash B, Kligermann Y, Gorb SN (2011) Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl Phys A Mater Sci Process 103:933CrossRefGoogle Scholar
  124. Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765CrossRefGoogle Scholar
  125. Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb SN, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605CrossRefGoogle Scholar
  126. Walker G, Yulf AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool (Lond) 205:297CrossRefGoogle Scholar
  127. Wigglesworth VB (1987) How does a fly cling to the under surface of a glass sheet? J Exp Biol 129:373Google Scholar
  128. Wolff JO, Gorb SN (2011) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc London, Ser B 279:139CrossRefGoogle Scholar
  129. Wolff JO, Gorb SN (2012) Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). J Exp Biol 215:179CrossRefGoogle Scholar
  130. Wolff JO, Gorb SN (2016) Attachment structures and adhesive secretions in arachnids. Springer, BerlinCrossRefGoogle Scholar
  131. Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 16041421:3799CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Functional Morphology and BiomechanicsZoological Institute at the University of KielKielGermany

Personalised recommendations