Living reference work entry


Bioadhesion is a versatile tool used by many organisms for a variety of purposes. It has roles to play in construction, predation, defense, and attachment and covers different concepts based on biochemical and mechanical principles. The specific request on the bond combined with millions of years of evolution results in diverse inspirations for medical and technical applications. This requires knowledge of the adhesives themselves in terms of composition, structural design, and interaction with surfaces. This chapter gives an overview about natural adhesives and biological adhesives leading to bioinspired applications. The terminology used in this chapter is based on the adhesive’s origin and usage and the underlying concept: while natural adhesives are composed of bio-based raw materials for artificial applications, biological adhesives are expressed by natural organisms for versatile purposes. The latter in particular can lead to bioinspired applications that are not restricted to adhesion, including concepts to avoid adhesion as in terms of antifouling. Both kinds of adhesive, i.e., natural and biological, are relevant for biocompatible adhesives. This characteristic is mandatory for applications as in cosmetics, food, or medicine. In view of their interaction with vital tissues and their medical eligibility, a brief digression into biomimetic adhesives is given.


Natural adhesives Biological adhesives Bio-based adhesive Biomimetic adhesives Bioinspired adhesives 


  1. Annabi N et al (2015) Elastic sealants for surgical applications. Eur J Pharm Biopharm 95(Pt A):27–39CrossRefGoogle Scholar
  2. Antony AC (1954) Use of fish slime in structural engineering. J Bombay Nat Hist Soc 50(3&4):682–683Google Scholar
  3. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8CrossRefGoogle Scholar
  4. Balcioglu S et al (2016) Design of xylose-based semisynthetic polyurethane tissue adhesives with enhanced bioactivity properties. ACS Appl Mater Interfaces 8(7):4456–4466CrossRefGoogle Scholar
  5. Baroncini EA et al (2016) Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci 133(45):44103CrossRefGoogle Scholar
  6. Bochynska AI et al (2016) Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions. J Mater Sci Mater Med 27(5):85_1–85_18CrossRefGoogle Scholar
  7. Boëda E et al (2008) New evidence for significant use of bitumen in Middle Palaeolithic technical systems at Umm el Tlel (Syria) around 70,000 BP. Paléorient 34(2):67–83CrossRefGoogle Scholar
  8. Buch K et al (2009) Investigation of various shellac grades: additional analysis for identity. Drug Dev Ind Pharm 35(6):694–703CrossRefGoogle Scholar
  9. Chapman J et al (2014) Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeterior Biodegrad 86A:6–13CrossRefGoogle Scholar
  10. Cohen ER et al (2008) Quantities, units and symbols in physical chemistry. IUPAC/RSC Publishing, CambridgeGoogle Scholar
  11. Cole MR, Hansell MH, Seath CJ (2001) A quantitative study of the physical properties of nest paper in three species of Vespine wasps (Hymenoptera, Vespidae). Insect Soc 48:33–39CrossRefGoogle Scholar
  12. Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche J Entomol 87(3–4):143–169CrossRefGoogle Scholar
  13. Ehrlich H et al (2013) First report on chitinous holdfast in sponges (Porifera). Proc R Soc B Biol Sci 280(1762):20130339_1–20130339_9CrossRefGoogle Scholar
  14. Erren TC et al (2013) Oceans of plastics: possible risks of cancer in marine wildlife and humans. In: Allodi S, Nazari EM (eds) Exploring themes on aquatic toxicology. Research Signpost, TrivandrumGoogle Scholar
  15. Evans CW (1977) The ultrastructure of larvae from the marine sponge Halichondria moorei Bergquist (Porifera, Demospongiae). Cah Biol Mar 13:427–433Google Scholar
  16. Ferguson J, Nürnberger S, Redl H (2010) Fibrin: the very first biomimetic glue – still a great tool. In: von Byern J, Grunwald I (eds) Biological adhesive systems: from nature to technical and medical application, 1st edn. Springer, Wien/New YorkGoogle Scholar
  17. Fishelson L (1981) Observation of the moving colonies of the genus Tethya (Desmospongia, Porifera) I. Behaviour and cytology. Zoomorphology 98:89–99CrossRefGoogle Scholar
  18. Foelix RF et al (2016) Über den Bau der Wohnröhre bei wüstenlebenden Spinnen. Arachne 21(1):4–17Google Scholar
  19. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782_1–e1700782_5CrossRefGoogle Scholar
  20. Gohad NV et al (2014) Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun 5:4414_1–4414_9CrossRefGoogle Scholar
  21. Gosline JM et al (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(Pt 23):3295–3303Google Scholar
  22. Graham LD (2005) Biological adhesives from nature. In: Bowlin GL, Wnek G (eds) Encyclopedia of biomaterials and biomedical engineering. Taylor & Francis, OxonGoogle Scholar
  23. Graham LD et al (2005) Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. Biomacromolecules 6(6):3300–3312CrossRefGoogle Scholar
  24. Greenwood PH (1986) The natural history of African lungfishes. J Morphol 190(Suppl. 1):163–179CrossRefGoogle Scholar
  25. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807CrossRefGoogle Scholar
  26. Hamwood TE et al (2002) Preliminary characterization and extraction of anterior adhesive secretion in monogenean (platyhelminth) parasites. Folia Parasitol 49:39–49CrossRefGoogle Scholar
  27. Hennebert E et al (2015) Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 5(1):20140064CrossRefGoogle Scholar
  28. Henschel JR (2017) The biology of Leucorchestris arenicola (Araneae: Heteropodidae), a burrowing spider of the Namib dunes. In: Seely MK (ed) Namib ecology: 25 years of Namib research, Transvaal museum monograph, vol 7. Transvaal Museum, PretoriaGoogle Scholar
  29. Hepburn HR et al (1991) Synthesis and secretion of beeswax in henexbees. Apidologie 22:21–36CrossRefGoogle Scholar
  30. Hon DNS (1989) Cellulosic adhesives. In: Hemingway RW, Conner AH (eds) Adhesives from renewable resources, ACS symposium series, vol 385. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  31. Huang Y et al (2016) Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proc Natl Acad Sci U S A 113(23):E3193–E3202CrossRefGoogle Scholar
  32. Jakobsson S et al (1999) An 11-ketotestosterone induced kidney-secreted protein: the nest building glue from male three-spined stickleback, Gasterosteus aculeatus. Fish Physiol Biochem 20:79–85CrossRefGoogle Scholar
  33. Karak N (2016) Biopolymers for paints and surface coatings. In: Pacheco-Torgal F, Ivanov V, Karak N, Jonkers H (eds) Biopolymers and biotech admixtures for eco-efficient construction materials, Woodhead publishing series in civil and structural engineering, vol 63. Elsevier, AmsterdamGoogle Scholar
  34. Kearn GC, Evans-Gowing R (1998) Attachment and detachment of the anterior adhesive pads of the monogenean (platyhelminth) parasite Entobdella soleae from the skin of the common sole (Solea solea). Int J Parasitol 28(10):1583–1593CrossRefGoogle Scholar
  35. Kemp DH, Stone BF, Binnington KC (1982) Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and the host response. In: Obenchain F, Galun R (eds) Physiology of ticks. Pergamon Press, OxfordGoogle Scholar
  36. Kitzan SM, Sweeny PR (1968) A light and electron microscope study of the structure of Protopterus annectens epidermis. I: mucus production. Can J Zool 46:767–772CrossRefGoogle Scholar
  37. Klöppel A et al (2013) Detection of bioactive compounds in the mucus nets of Dendropoma maxima, Sowerby 1825 (Prosobranch Gastropod Vermetidae, Mollusca). J Mar Biol 2013:1–9CrossRefGoogle Scholar
  38. Köckritz A, Martin A (2008) Oxidation of unsaturated fatty acid and vegetable oils. Eur J Lipid Sci Technol 110(9):812–824Google Scholar
  39. Koerner L, Gorb SN, Betz O (2012) Functional morphology and adhesive performance of the stick-capture apparatus of the rove beetles Stenus spp. (Coleoptera, Staphylinidae). Zoology 115(2):117–127CrossRefGoogle Scholar
  40. Kumar Patel A, Mathias JD, Michaud P (2013) Polysaccharides as adhesives: a critical review. Rev Adhes Adhes 1(3):312–345CrossRefGoogle Scholar
  41. Laursen D (1953) The genus Ianthina. Dana-Report 38:1–40Google Scholar
  42. Lebesgue N et al (2016) Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach. J Proteome 138:61–71CrossRefGoogle Scholar
  43. Lee C et al (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 14(6):2004–2013CrossRefGoogle Scholar
  44. Lengerer B et al (2016) Adhesive organ regeneration in Macrostomum lignano. BMC Dev Biol 16(20):1–16Google Scholar
  45. Lengerer B et al (2017) Organ specific gene expression in the regenerating tail of Macrostomum lignano. Dev Biol.
  46. Li A, Li K (2014) Pressure-sensitive adhesives based on epoxidized soybean oil and dicarboxylic acids. ACS Sustain Chem Eng 2(8):2090–2096CrossRefGoogle Scholar
  47. Li J et al (2017) Tough adhesives for diverse wet surfaces. Science 357(6349):378–381CrossRefGoogle Scholar
  48. Maiorana A et al (2015) Bio-based epoxy resin toughening with cashew nut shell liquid-derived resin. Green Mater 3(3):80–92CrossRefGoogle Scholar
  49. Mann LK et al (2012) Fetal membrane patch and biomimetic adhesive coacervates as a sealant for fetoscopic defects. Acta Biomater 8(6):2160–2165CrossRefGoogle Scholar
  50. Mathias JD, Grédiac M, Michaud P (2016) Bio-based adhesives. In: Pacheco-Torgal F, Ivanov V, Karak N, Jonkers H (eds) Biopolymers and biotech admixtures for eco-efficient construction materials, Woodhead publishing series in civil and structural engineering, vol 63. Elsevier, AmsterdamGoogle Scholar
  51. McGovern JN, Jeanne RL, Effland MJ (1988) The nature of wasp nest paper. TAPPI J 71(12):133–139Google Scholar
  52. Melzer B et al (2010) The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J R Soc Interface 7:1383–1389CrossRefGoogle Scholar
  53. Meyer-Rochow VB (1979) The attachment mechanism of the waterflea Simocephalus. Microscopy 33: 551–553 & 558Google Scholar
  54. Meyer-Rochow VB (2007) Glowworms: a review of Arachnocampa spp. and kin. Luminescence 22:251–265CrossRefGoogle Scholar
  55. Meyer-Rochow VB et al (2015) Commentary: Plastic ocean and the cancer connection: 7 questions and answers. Environ Res 142:575–578CrossRefGoogle Scholar
  56. Michel HB (1984) Chaetognatha of the Caribbean Sea and adjacent areas, NOAA technical report NMFS, vol 15. NOAA/National Marine Fisheries Service, SeattleGoogle Scholar
  57. Miller SL (1974) Adaptive design of locomotion and foot form in prosobranch gastropods. J Exp Mar Biol Ecol 14(2):99–156CrossRefGoogle Scholar
  58. Miserez A et al (2008) The transition from stiff to compliant materials in squid beaks. Science 319:1816–1819CrossRefGoogle Scholar
  59. Mohajerani A et al (2017) Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts. Constr Build Mater 153:69–80CrossRefGoogle Scholar
  60. NPCS Board of Consultants & Engineers (2017) The complete book on adhesives, glues & resins technology (with process & formulations). Asia Pacific Business Press Inc, DelhiGoogle Scholar
  61. Nutting WL, Blum MS, Fales HM (1974) Behaviour of the North American termite Tenuirostritermes tenuirostris, with special reference to the soldier frontal gland secretion, its chemical composition and use in defense. Psyche 84(1):167–177CrossRefGoogle Scholar
  62. Oda M et al (1998) Study on food components: the structure of N-linked asialo carbohydrate from the edible bird’s nest built by Collocalia fuciphaga. J Agric Food Chem 46:3047–3053CrossRefGoogle Scholar
  63. Papanna R et al (2015) Cryopreserved human amniotic membrane and a bioinspired underwater adhesive to seal and promote healing of iatrogenic fetal membrane defect sites. Placenta 36(8):888–894CrossRefGoogle Scholar
  64. Papanna R et al (2016) Cryopreserved human umbilical cord patch for in-utero spina bifida repair. Ultrasound Obstet Gynecol 47(2):168–176CrossRefGoogle Scholar
  65. Patachia S, Croitoru C (2016) Biopolymers for wood preservation. In: Pacheco-Torgal F, Ivanov V, Karak N, Jonkers H (eds) Biopolymers and biotech admixtures for eco-efficient construction materials, Woodhead publishing series in civil and structural engineering, vol 63. Elsevier, AmsterdamGoogle Scholar
  66. Penning M (1996) Aqueous shellac solutions for controlled release coatings. In: Karsa DR, Stephenson RA (eds) Chemical aspects of drug delivery systems. The Royal Society of Chemistry, CambridgeGoogle Scholar
  67. Poulsen N et al (2014) Isolation and biochemical characterization of underwater adhesives from diatoms. Biofouling 30(4):513–23Google Scholar
  68. Rischka K et al (2010) Bio-inspired polyphenolic adhesives for medical and technical applications. In: von Byern J, Grunwald I (eds) Biological adhesive systems: from nature to technical and medical application, 1st edn. Springer, Wien/NewYorkGoogle Scholar
  69. Rodrigues M et al (2016) Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. Biofouling 32(9):1115–1129CrossRefGoogle Scholar
  70. Sahni V et al (2014) Prey capture adhesives produced by orb-weaving spiders. In: Asakura T, Miller T (eds) Biotechnology of silk. Springer, DordrechtGoogle Scholar
  71. Sankaranarayanan Y (1989) Adhesives & Shellac. Shellac Export Promotion Council, CalcuttaGoogle Scholar
  72. Schlee D, Ebel F (1983) Note on the chemical nature of the adhesive of viscid discs in Catasetum fimbriatum Lindl. (Orchidaceae). Am J Bot 70(6):872–876CrossRefGoogle Scholar
  73. Schwotzer W et al (2012) Biologische und biomimetische Klebstoffe (Teil 2) – Praxistauglichkeit und Trends. Adhäsion 10:38–43Google Scholar
  74. Shibata M (2013) Bio-based epoxy resin/clay nanocomposites. In: Mittal V (ed) Thermoset nanocomposites. Wiley-VCH Verlag, WeinheimGoogle Scholar
  75. Shirtcliffe NJ, McHale G, Newton MI (2012) Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces. PLoS One 7(5), e36983.
  76. Singer TL, Espelie KE, Himmelsbach DS (1992) Ultrastructural and chemical examination of paper and pedicel from laboratory and field nests of the social wasp Polistes metricus say. J Chem Ecol 18(1):77–86CrossRefGoogle Scholar
  77. Smith AM (2016) Biological adhesives. Springer, ChamCrossRefGoogle Scholar
  78. Smith AM, Callow JA (2006) Biological adhesives. Springer, HeidelbergCrossRefGoogle Scholar
  79. Specht F et al (1998) The application of shellac acidic polymer for enteric coating. Pharm Technol 10:20–28Google Scholar
  80. Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7):1502–1516CrossRefGoogle Scholar
  81. Stabili L et al (2015) The mucus of Actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Mar Drugs 13(8):5276–5296CrossRefGoogle Scholar
  82. Stevens CL, Hurd CL, Smith MJ (2002) Field measurement of the dynamics of the bull kelp Durvillaea antarctica (Chamisso) Heriot. J Exp Mar Biol Ecol 269:147–171CrossRefGoogle Scholar
  83. Sung HW et al (1998) Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 42(4):560–567CrossRefGoogle Scholar
  84. Suppan J et al (2017) Tick attachment cement – reviewing the mysteries of a biological skin plug system. Biol Rev.
  85. Tulloch AP (1970) The composition of beeswax and other waxes secreted by insects. Lipids 5(2):247–258CrossRefGoogle Scholar
  86. Türk O (2014) Stoffliche Nutzung nachwachsender Rohstoffe. Grundlagen – Werkstoffe – Anwendungen. Springer, WiesbadenCrossRefGoogle Scholar
  87. Türünc O et al (2015) From plant oils to plant foils: straightforward functionalization and crosslinking of natural plant oils with triazolinediones. Eur Polym J 65:286–297CrossRefGoogle Scholar
  88. van der Kooij D, Van der Wielen PWJJ (2014) Microbial growth in drinking-water supplies: problems, causes, control and research needs. IWA Publishing, LondonGoogle Scholar
  89. Van Iersel JJA (1953) An analysis of the parental behaviour of the male three-spined stickleback (Gasterosteus aculeatus L.). E. J. Brill, LeidenGoogle Scholar
  90. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59(10):3280–3286Google Scholar
  91. von Byern J, Grunwald I (2010) Biological adhesive systems: from nature to technical and medical application. Springer, Wien/NewYorkCrossRefGoogle Scholar
  92. von Byern J et al (2017) Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae). Sci Rep 7(1):6647_1–6647_13Google Scholar
  93. von Byern J et al (2018) Examples of bioadhesives for defence and predation. In: Gorb SN, Gorb EV (eds) Functional surfaces in biology III: diversity of the physical phenomena. Biologically-inspired systems, vol 10. Springer International Publishing AG, p XV, 268Google Scholar
  94. Waugh DG et al (2016) Surface treatments to modulate bioadhesion: a critical review. Rev Adhes Adhes 4(1):69–103CrossRefGoogle Scholar
  95. Weakley FB, Mehltretter CL (1965) Low cost protein glue for southern pine plywood. For Prod J 15(1):8–12Google Scholar
  96. Wilks AM et al (2015) Double-network gels and the toughness of terrestrial slug glue. J Exp Biol 218(Pt 19):3128–3137CrossRefGoogle Scholar
  97. Wu Y, Li A, Li K (2015) Pressure sensitive adhesives based on oleic acid. J Am Oil Chem Soc 92(1):111–120CrossRefGoogle Scholar
  98. Yang X, Deng W (2017) Morphological and structural characterization of the attachment system in aerial roots of Syngonium podophyllum. Planta 245(3):507–521CrossRefGoogle Scholar
  99. Yeargan KV (1994) Biology of bolas spiders. Annu Rev Entomol 39:81–99CrossRefGoogle Scholar
  100. Zheden V et al (2015) Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea). Interface Focus 5(1):20140049CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Adhesive Bonding Technology and Surfaces, Adhesives and Polymer ChemistryFraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)BremenGermany
  2. 2.Austrian Cluster for Tissue RegenerationLudwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
  3. 3.Faculty of Life Science, Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria

Personalised recommendations