Advertisement

Clinical Trials of Bacteriophage Therapeutics

  • Shawna McCallinEmail author
  • Harald Brüssow
Living reference work entry

Abstract

The 100-year anniversary of the discovery of bacteriophages has come and gone. After being overshadowed by the limelight success of penicillin in the 1940s, phage therapy (PT) is once again making headlines in the wake of the antibiotic resistance crisis for its potential to cure bacterial infections. However, the decade-old adage of “the revival of phage therapy” will soon regress to the status of cliché: few clinical trials have been reported in the recent history; and zero Phase III trials exist to date. At such a rate, antibiotic resistance will outpace the exploration and development of PT and its adoption into modern medicine. The medical and scientific communities are now trying to address the enduring uncertainty about PT and recommence clinical evaluation. These phage trials conducted in more recent history, and their germane contributions, as well as valuable lessons, to the establishment of phage therapy as a Western practice, are outlined in this chapter in detail. This chapter aims to explain what phage therapy must confront and accomplish in order to insert itself into contemporary legislative frameworks and contend with the performance of standard pharmaceuticals in clinical trials so that it may be regarded as a viable treatment option beyond niche, noncommercial applications.

References

  1. Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P, ⋯ Whitaker IS et al (2014) Gram negative wound infection in hospitalised adult burn patients – systematic review and metanalysis. PLoS One 9(4):e95042. doi: 10.1371/journal.pone.0095042
  2. Barletta F, Ochoa TJ, Mercado E, Ruiz J, Ecker L, Lopez G, ⋯ Cleary TG et al (2011) Quantitative real-time polymerase chain reaction for enteropathogenic Escherichia Coli: a tool for investigation of asymptomatic versus symptomatic infections. Clin Infect Dis 53(12):1223–1229. doi: 10.1093/cid/cir730
  3. Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia Coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49(7):2874–2878. doi: 10.1128/AAC.49.7.2874-2878.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783. doi: 10.2217/fmb.13.47 CrossRefPubMedGoogle Scholar
  5. Chan BK, Brown K, Kortright KE, Mao S, Turner PE (2016a) Extending the lifetime of antibiotics: how can phage therapy help? Future Microbiol 11:1105–1107. doi: 10.2217/fmb-2016-0133 CrossRefPubMedGoogle Scholar
  6. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016b) Phage selection restores antibiotic sensitivity in MDR Pseudomonas Aeruginosa. Sci Rep 6:26717. doi: 10.1038/srep26717 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, ⋯ Brussow, H. et al (2004a) Isolation of Escherichia Coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186(24):8287–8294. doi: 10.1128/JB.186.24.8287-8294.2004
  8. Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brussow H (2004b) In vitro and in vivo bacteriolytic activities of Escherichia Coli phages: implications for phage therapy. Antimicrob Agents Chemother 48(7):2558–2569. doi: 10.1128/AAC.48.7.2558-2569.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Copeland-Halperin LR, Kaminsky AJ, Bluefeld N, Miraliakbari R (2016) Sample procurement for cultures of infected wounds: a systematic review. J Wound Care 25(4): S4–S6, S8–S10. doi: 10.12968/jowc.2016.25.Sup4.S4
  10. Coulter LB, McLean RJ, Rohde RE, Aron GM (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia Coli and Pseudomonas Aeruginosa biofilms. Virus 6(10):3778–3786. doi: 10.3390/v6103778 CrossRefGoogle Scholar
  11. EMA (2016) Tripartite meeting held between the EMA, FDA, and PMDA at the EMA, London, on 1–2 September 2016 to discuss regulatory approaches for the evaluation of antibacterial agentsGoogle Scholar
  12. Expert round table on, a., & re-implementation of bacteriophage, t (2016) Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol J 11(5):595–600. doi: 10.1002/biot.201600023 CrossRefGoogle Scholar
  13. Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, ⋯ Mekalanos JJ et al (2005) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102(5):1702–1707. doi: 10.1073/pnas.0408992102
  14. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33. doi: 10.12968/jowc.2016.25.7.S27 CrossRefPubMedGoogle Scholar
  15. Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J, ⋯ Lane HC et al (2000) Evaluation of CD4+ T cell function in vivo in HIV infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182(2):435–441. doi: 10.1086/315739
  16. Group, E. E. J. W. (2009). ECDC/EMEA joint technical report: the bacterial challenge: time to react. Stockholm: Retrieved from http://www.ecdc.europa.eu/en/publications/Publications/Forms/ECDC_DispForm.aspx?ID=444
  17. Guggenheim M, Zbinden R, Handschin AE, Gohritz A, Altintas MA, Giovanoli P (2009) Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986–2005). Burns 35(4):553–560. doi: 10.1016/j.burns.2008.09.004 CrossRefPubMedGoogle Scholar
  18. Hawkins C, Harper D, Burch D, Anggard E, Soothill J (2010) Topical treatment of Pseudomonas Aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146(3–4):309–313. doi: 10.1016/j.vetmic.2010.05.014 CrossRefPubMedGoogle Scholar
  19. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51. doi: 10.1038/nbt.2786 CrossRefPubMedGoogle Scholar
  20. Henein A (Cartographer) (2013) What are the limitations on the wider therapeutic use of phages?Google Scholar
  21. Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, ⋯ Sulakvelidze A, et al (2005) The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus Aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol 30(1):23–26. doi: 10.1111/j.1365-2230.2004.01600.x
  22. Kamal F, Dennis JJ (2015) Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81(3):1132–1138. doi: 10.1128/AEM.02850-14 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kirby AE (2012) Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus Aureus. PLoS One 7(11):e51017. doi: 10.1371/journal.pone.0051017 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595. doi: 10.1016/j.tibtech.2010.08.001 CrossRefPubMedGoogle Scholar
  25. Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, ⋯ Kutateladze M et al (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4(5):643–650. doi: 10.1111/j.1751-7915.2011.00259.x
  26. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173. doi: 10.1038/nrmicro822 CrossRefPubMedGoogle Scholar
  27. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41(7):453–458CrossRefPubMedGoogle Scholar
  28. Marza JA, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas Aeruginosa infected patients. Burns 32(5):644–646. doi: 10.1016/j.burns.2006.02.012 CrossRefPubMedGoogle Scholar
  29. McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S, ⋯ Brussow H et al (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443(2):187–196. doi: 10.1016/j.virol.2013.05.022
  30. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, ⋯ Vaneechoutte M et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944. doi: 10.1371/journal.pone.0004944
  31. Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, ⋯ Gorski A et al (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121. doi: 10.1016/B978-0-12-394438-2.00003-7
  32. Mullard A (2017a) Cures act shakes up the FDA and NIH. Nat Rev Drug Discov 16(9). doi: 10.1038/nrd.2016.285
  33. Mullard A (2017b) R&D returns continue to fall. Nat Rev Drug Discov 16(9). doi: 10.1038/nrd.2016.284
  34. O’Neill J (2014) Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance, LondonGoogle Scholar
  35. Ochs HD, Buckley RH, Kobayashi RH, Kobayashi AL, Sorensen RU, Douglas SD, ⋯ Hershfield MS et al (1992) Antibody responses to bacteriophage phi X174 in patients with adenosine deaminase deficiency. Blood 80(5):1163–1171Google Scholar
  36. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, ⋯ Que YA et al (2016) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. doi: 10.1093/infdis/jiw632
  37. Oliveira H, Sillankorva S, Merabishvili M, Kluskens LD, Azeredo J (2015) Unexploited opportunities for phage therapy. Front Pharmacol 6:180. doi: 10.3389/fphar.2015.00180 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Perry EB, Barrick JE, Bohannan BJ (2015) The molecular and genetic basis of repeatable coevolution between Escherichia Coli and bacteriophage T3 in a laboratory microcosm. PLoS One 10(6):e0130639. doi: 10.1371/journal.pone.0130639 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, ⋯ Van den Eede G et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32(7):2173–2179. doi: 10.1007/s11095-014-1617-7
  40. Pirnay JP, Verbeken G, Rose T, Jennes S, Zizi M, Huys I, ⋯ De Vos D et al (2012) Introducing yesterday’s phage therapy in today’s medicine. Futur Virol 7(4):379–390. doi: 10.2217/fvl.12.24
  41. Resch G (2015) Phage based therapies. Oral presentation at the ICAAC-ICC, San DiegoGoogle Scholar
  42. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–238, 240–233. doi: 10.12968/jowc.2009.18.6.42801
  43. Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, ⋯ Pirnay JP et al (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4(2):66–73Google Scholar
  44. Rubinstein A, Mizrachi Y, Bernstein L, Shliozberg J, Golodner M, Liu GQ, Ochs HD (2000) Progressive specific immune attrition after primary, secondary and tertiary immunizations with bacteriophage phi X174 in asymptomatic HIV-1 infected patients. AIDS 14(4):F55–F62CrossRefPubMedGoogle Scholar
  45. Sarker SA, McCallin S, Barretto C, Berger B, Pittet AC, Sultana S, ⋯ Brussow H et al (2012) Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology 434(2):222–232. doi: 10.1016/j.virol.2012.09.002
  46. Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, ⋯ Brussow H et al (2016) Oral phage therapy of acute bacterial diarrhea with two Coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137. doi: 10.1016/j.ebiom.2015.12.023
  47. Tevdoradze E, Kvachadze L, Kutateladze M, Stewart CR (2014) Bactericidal genes of staphylococcal bacteriophage Sb-1. Curr Microbiol 68(2):204–210. doi: 10.1007/s00284-013-0456-9 CrossRefPubMedGoogle Scholar
  48. Torres-Barcelo C, Arias-Sanchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME (2014) A window of opportunity to control the bacterial pathogen Pseudomonas Aeruginosa combining antibiotics and phages. PLoS One 9(9):e106628. doi: 10.1371/journal.pone.0106628 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Torres-Barcelo C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24(4):249–256. doi: 10.1016/j.tim.2015.12.011 CrossRefPubMedGoogle Scholar
  50. Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay JP (2007) European regulatory conundrum of phage therapy. Future Microbiol 2(5):485–491. doi: 10.2217/17460913.2.5.485 CrossRefPubMedGoogle Scholar
  51. Verbeken G, Huys I, De Vos D, De Coninck A, Roseeuw D, Kets E et al (2016) Access to bacteriophage therapy: discouraging experiences from the human cell and tissue legal framework. FEMS Microbiol Lett 363(4). doi: 10.1093/femsle/fnv241
  52. Verbeken G, Pirnay JP, De Vos D, Jennes S, Zizi M, Lavigne R, ⋯ Huys I et al (2012) Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp 60(3):161–172. doi: 10.1007/s00005-012-0175-0
  53. Verma V, Harjai K, Chhibber S (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella Pneumoniae. Biofouling 26(6):729–737. doi: 10.1080/08927014.2010.511196 CrossRefPubMedGoogle Scholar
  54. Weber-Dabrowska B, Mulczyk M, Gorski A (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp 48(6):547–551Google Scholar
  55. Weber-Dabrowska B, Mulczyk M, Gorski A (2001) Bacteriophage therapy for infections in cancer patients. Clin Appl Immunol Rev 1:4. doi: 10.1016/S1529-1049(01)00015-0 CrossRefGoogle Scholar
  56. Weber-Dabrowska B, Mulczyk M, Gorski A (2003) Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35(4):1385–1386CrossRefPubMedGoogle Scholar
  57. WHO (2015) Global action plan on antimicrobiobial resistance. WHO Document Production Services, GenevaGoogle Scholar
  58. Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49(1):19–23PubMedPubMedCentralGoogle Scholar
  59. Wright A, Hawkins CH, Anggard EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas Aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357. doi: 10.1111/j.1749-4486.2009.01973.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
  2. 2.Host-Microbiome Interaction Group, Institute of Nutritional ScienceNestlé Research CenterLausanneSwitzerland

Personalised recommendations