Bacteriophage Utilization in Animal Hygiene

  • Sarah Klopatek
  • Todd R. CallawayEmail author
  • Tryon Wickersham
  • T. G. Sheridan
  • D. J. Nisbet
Living reference work entry


Each year approximately 48 million people become ill from foodborne illnesses. Bacterial contamination of foods, including produce, dairy, and animal-derived products, are a major health concern costing upwards of $43 billion (USD), also per year. Many of the most common foodborne pathogenic bacteria can be isolated from the gastrointestinal tract of poultry, swine, and cattle. Pathogens such as Campylobacter, Salmonella, and enterohemorrhagic E. coli (EHEC) often do not cause illness in the animal, and colonization is not easily detected in otherwise healthy animals. As concerns surrounding antibiotic resistance have increased, the livestock and poultry industries have sought to reduce antibiotic usage and utilize alternative means to reduce bacterial contamination of food. Bacteriophages are viruses that prey solely upon bacteria, including EHEC and Salmonella. Phages can be utilized in all stages of animal production to improve both animal hygiene and food safety, from the farm to the fork. Efforts, for example, are underway to design specific hide sprays that will kill pathogens before they can be carried into the abattoir. Although there have been great strides in developing phage as a preharvest pathogen reduction strategy, further research is necessary, along with an educational outreach to producers and consumers alike about the benefits of phage usage relative to antibiotics as a tool in the arsenal to improve food safety.


  1. Anderson RC, Genovese KJ, Harvey RB, Stanker LH, DeLoach JR, Nisbet DJ (2000) Assessment of the long-term shedding pattern of Salmonella serovar cholerasuis following experimental infection of neonatal piglets. J Vet Diagn Investig 12:257–260CrossRefGoogle Scholar
  2. Arthur TM, Keen JE, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, Shackelford SD, Wheeler TL, Nou X, Koohmaraiel M (2009) Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Appl Environ Microbiol 75(20):6515–6523PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arthur TM, Nou X, Kalchayanand N, Bosilevac JM, Wheeler T, Koohmaraie M (2011) Survival of Escherichia coli O157:H7 on cattle hides. Appl Environ Microbiol 77(9):3002–3008PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arthur TM, Kalchayanand N, Agga GE, Wheeler TL, Koohmaraie M (2017) Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7 prevalence on hides and carcasses. Foodborne Pathog Dis 14(1):17–22PubMedCrossRefGoogle Scholar
  5. Assembly of Life Sciences, Committee to Study the Human Health Effects of Subtherapeutic Antibiotic Use in Animal F (1980) The effects on human health of subtherapeutic use of antimicrobials in animal feeds. National Academy of Sciences, Washington, DCGoogle Scholar
  6. Atterbury RJ, Van Bergen MP, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14):4543–4549PubMedPubMedCentralCrossRefGoogle Scholar
  7. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, Fenton AK, Barrow P, Sockett RE (2011) Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 77(16):5794–5803PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bach SJ, Johnson RP, Stanford K, McAllister TA (2009) Bacteriophages reduce Escherichia coli O157:H7 levels in experimentally inoculated sheep. Can J Anim Sci 89(2):285–293CrossRefGoogle Scholar
  9. Barkocy-Gallagher GA, Arthur TM, Siragusa GR, Keen JE, Elder RO, Laegreid WW, Koohmaraie M (2001) Genotypic analyses of Escherichia coli O157:H7 and O157 nonmotile isolates recovered from beef cattle and carcasses at processing plants in the Midwestern states of the United States. Appl Environ Microbiol 67(9):3810–3818PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barkocy-Gallagher GA, Berry ED, Rivera-Betancourt M, Arthur TM, Nou X, Koohmaraie M (2002) Development of methods for the recovery of Escherichia coli O157:H7 and Salmonella from beef carcass sponge samples and bovine fecal and hide samples. J Food Prot 65(10):1527–1534PubMedCrossRefGoogle Scholar
  11. Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Koohmaraie M (2004) Characterization of O157:H7 and other Escherichia coli isolates recovered from cattle hides, feces, and carcasses. J Food Prot 67(5):993–998PubMedCrossRefGoogle Scholar
  12. Bell DD (2003) Historical and current molting practices in the U.S. table egg industry. Poult Sci 82(6):965–970PubMedCrossRefGoogle Scholar
  13. Bhandari SK, Xu B, Nyachoti CM, Giesting DW, Krause DO (2008) Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea: effects on gut microbial ecology. J Anim Sci 86(4):836–847PubMedCrossRefGoogle Scholar
  14. Bicalho RC, Santos TM, Gilbert RO, Caixeta LS, Teixeira LM, Bicalho ML, Machado VS (2010) Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I. Isolation and lytic activity estimation of bacteriophages. J Dairy Sci 93:93–104PubMedCrossRefGoogle Scholar
  15. Bicalho MLS, Machado VS, Nydam DV, Santos TMA, Bicalho RC (2012) Evaluation of oral administration of bacteriophages to neonatal calves: phage survival and impact on fecal Escherichia coli. Livest Sci 144(3):294–299CrossRefGoogle Scholar
  16. Bosilevac JM, Shackelford SD, Brichta DM, Koohmaraie M (2005a) Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. J Food Prot 68(7):1393–1398PubMedCrossRefGoogle Scholar
  17. Bosilevac JM, Nou X, Osborn MS, Allen DM, Koohmaraie M (2005b) Development and evaluation of an on-line hide decontamination procedure for use in a commercial beef processing plant. J Food Prot 68(2):265–272PubMedCrossRefGoogle Scholar
  18. Braden CR (2006) Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43(4):512–517PubMedCrossRefGoogle Scholar
  19. Byrd JA, Corrier DE, Deloach JR, Nisbet DJ, Stanker LH (1998) Horizontal transmission of Salmonella typhimurium in broiler chicks. J Appl Poult Res 7:75–80CrossRefGoogle Scholar
  20. Byrd JA, Hargis BM, Caldwell DJ, Bailey RH, Herron KL, McReynolds JL, Brewer RL, Anderson RC, Bischoff KM, Callaway TR, Kubena LF (2001) Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poult Sci 80(3):278–283PubMedCrossRefGoogle Scholar
  21. Callaway TR, Oliver SP (2009) On-farm strategies to reduce foodborne pathogen contamination. Foodborne Pathog Dis 6(7):753PubMedCrossRefGoogle Scholar
  22. Callaway TR, Edrington TS, Brabban AD, Keen JE, Anderson RC, Rossman ML, Engler MJ, Genovese KJ, Gwartney BL, Reagan JO, Poole TL, Harvey RB, Kutter EM, Nisbet DJ (2006) Fecal prevalence of Escherichia coli O157, Salmonella, Listeria, and bacteriophage infecting E. coli O157:H7 in feedlot cattle in the southern plains region of the United States. Foodborne Pathog Dis 3(3):234–244PubMedCrossRefGoogle Scholar
  23. Callaway TR, Byrd JA, Nisbet DJ, Edrington TS, Anderson RC (2008a) Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J Anim Sci 86(Suppl 14):e163–e172PubMedCrossRefGoogle Scholar
  24. Callaway TR, Edrington TS, Brabban AD, Anderson RC, Rossman ML, Engler MJ, Carr MA, Genovese KJ, Keen JE, Looper ML, Kutter EM, Nisbet DJ (2008b) Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog Dis 5:183–192PubMedCrossRefGoogle Scholar
  25. Callaway TR, Edrington T, Brabban A, Kutter E, Karriker L, Stahl C, Wagstrom L, Anderson R, Genovese K, McReynolds J, Harvey R, Nisbet D (2010) Isolation of Salmonella spp and bacteriophages active against Salmonella spp. from commercial swine feces. Foodborne Pathog Dis 7:851–856PubMedCrossRefGoogle Scholar
  26. Callaway TR, Edrington TS, Brabban A, Kutter B, Karriker L, Stahl C, Wagstrom E, Anderson R, Poole TL, Genovese K, Krueger N, Harvey R, Nisbet DJ (2011) Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing swine. Foodborne Pathog Dis 8:261–266PubMedCrossRefGoogle Scholar
  27. Casewell M, Friis C, Marco E, McMullin P, Phillips I (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52(2):159–161PubMedCrossRefGoogle Scholar
  28. Cason JA, Cox NA, Bailey JS (1994) Transmission of Salmonella typhimurium during hatching of broiler chicks. Avian Dis 38(3):583–588PubMedCrossRefGoogle Scholar
  29. CDC (2010) National Salmonella surveillance annual summary 2009. Centers for Disease Control and Prevention, DecaturGoogle Scholar
  30. Coffey B, Rivas L, Duffy G, Coffey A, Ross RP, McAuliffe O (2011) Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147(3):188–194PubMedCrossRefGoogle Scholar
  31. Collins JE, Bergeland ME, Bouley D, Ducommun AL, Francis DH, Yeske P (1989) Diarrhea associated with Clostridium perfringens type a enterotoxin in neonatal pigs. J Vet Diagn Investig 1(4):351–353CrossRefGoogle Scholar
  32. d’Herelle F (1919) Sur le role du microbe bacteriophage dans la typhose aviare. Comptes rendus Acad Sci Paris 169:932–934Google Scholar
  33. Danmap (2009) Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. In: Jensen VF (ed) Danmap 2009. National Food Institute, Denmark TUo, 19 MB, & Søborg D, CophenhagenGoogle Scholar
  34. de Graaf DC, Vanopdenbosch E, Ortega-Mora LM, Abbassi H, Peeters JE (1999) A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol 29(8):1269–1287PubMedCrossRefGoogle Scholar
  35. Dias RS, Eller MR, Duarte VS, Pereira ÂL, Silva CC, Mantovani HC, Oliveira LL, Silva Ede A, De Paula SO (2013) Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis. J Anim Sci 91(8):3930–3939PubMedCrossRefGoogle Scholar
  36. Dini C, De Urraza PJ (2010) Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. J Appl Microbiol 109(3):873–887PubMedCrossRefGoogle Scholar
  37. Dini C, Bolla PA, de Urraza PJ (2016) Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics. J Appl Microbiol 121(1):78–88PubMedCrossRefGoogle Scholar
  38. Doyle MP, Erickson MC (2012) Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol 152(3):54–74PubMedCrossRefGoogle Scholar
  39. Edrington TS, Loneragan GH, Hill J, Genovese KJ, He H, Callaway TR, Anderson RC, Brichta-Harhay DM, Nisbet DJ (2013) Development of a transdermal Salmonella challenge model in calves. J Food Prot 76(7):1255–1258PubMedCrossRefGoogle Scholar
  40. Elanco (2016) Consumer attitudes. ed ML and P research for USFRA, n=1,400. Elanco Animal Health, Eli Lilly. USBBUMUL0165(1)Google Scholar
  41. Fairbrother JM, Nadeau R, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6(1):17–39PubMedCrossRefGoogle Scholar
  42. Farzan A, Friendship RM, Dewey CE, Muckle AC, Gray TJ, Funk J (2008) Distribution of Salmonella serovars and phage types on 80 Ontario swine farms in 2004. Can J Vet Res 72(1):1–6PubMedPubMedCentralGoogle Scholar
  43. FDA (2006) Food additives permitted for direct addition to food for human consumption; bacteriophage preparation; final rule. Part 172 of Title 21 (Food and Drugs) of the United States Code of Federal Regulations. Federal Register, Washington, DC, Administration FaDGoogle Scholar
  44. FDA (2015) Veterinary feed directive. Fed Regist 80(106):31707–31735Google Scholar
  45. Fedorka-Cray PJ, Kelley LC, Stabel TJ, Gray JT, Laufer JA (1995) Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect Immun 63(7):2658–2664PubMedPubMedCentralGoogle Scholar
  46. Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S (2010) Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 65(4):619–625PubMedCrossRefGoogle Scholar
  47. Ficken MD, Wages DP (1997) Necrotic enteritis. In: Calnek BW (ed) Diseases of poultry, 10th edn. Wildlife Disease Association, Iowa State Press, Ames, pp 261–264Google Scholar
  48. Foley SL, Lynne AM, Nayak R (2008) Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86(Suppl 14):E149–E162PubMedCrossRefGoogle Scholar
  49. Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM (2006) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50:2912–2918PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grau FH, Brownlie LE, Smith MG (1969) Effects of food intake on numbers of Salmonellae and Escherichia coli in rumen and faeces of sheep. J Appl Bacteriol 32:112–117PubMedCrossRefGoogle Scholar
  51. Griffin PM, Tauxe RV (1991) The epidemiology of infection caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13:60–97PubMedCrossRefGoogle Scholar
  52. Gröhn YT, Rajala-Schultz PJ, Allore HG, DeLorenzo MA, Hertl JA, Galligan DT (2003) Optimizing replacement of dairy cows: modeling the effects of diseases. Prev Vet Med 61(1):27–43PubMedCrossRefGoogle Scholar
  53. Hald T, Vose D, Wegener HC, Koupeev T (2004) A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal 24(1):255–269PubMedCrossRefGoogle Scholar
  54. Henriques A, Sereno R, Almeida A (2013) Reducing Salmonella horizontal transmission during egg incubation by phage therapy. Foodborne Pathog Dis 10(8):718–722PubMedCrossRefGoogle Scholar
  55. Holm A, Poulsen H (1996) Zinc oxide in treating E. Coli diarrhea in pigs after weaning. Compend Contin Educ Pract Vet 18:S26Google Scholar
  56. Hortet P, Seegers H (1998) Loss in milk yield and related composition changes resulting from clinical mastitis in dairy cows. Prev Vet Med 37(1–4):1–20PubMedCrossRefGoogle Scholar
  57. Hosseindoust AR et al (2017) Dietary bacteriophages as an alternative for zinc oxide or organic acids to control diarrhoea and improve the performance of weanling piglets. Vet Med 62(2):53–61CrossRefGoogle Scholar
  58. Huff WE, Huff GR, Rath NC, Balog JM, Xie H, Moore PA Jr, Donoghue AM (2002) Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult Sci 81:437–441PubMedCrossRefGoogle Scholar
  59. Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2005) Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult Sci 84:655–659PubMedCrossRefGoogle Scholar
  60. Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
  61. Hurd HS, Wesley IV, Karriker LA (2001) The effect of lairage on Salmonella isolation from market swine. J Food Prot 64:939–944PubMedCrossRefGoogle Scholar
  62. Hurd HS, McKean JD, Griffith RW, Wesley IV, Rostagno MH (2002) Salmonella enterica infections in market swine with and without transport and holding. Appl Environ Microbiol 68(5):2376–2381PubMedPubMedCentralCrossRefGoogle Scholar
  63. Huzzey JM, Veira DM, Weary DM, von Keyserlingk MAG (2007) Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J Dairy Sci 90(7):3220–3233PubMedCrossRefGoogle Scholar
  64. Isaccson RA, Firkins LD, Weigel RM, Zuckermann FA, DiPietro JA (1999) Effect of transportation and feed withdrawal on shedding of Salmonella typhimurium among experimentally infected pigs. Am J Vet Res 60(9):1155–1158Google Scholar
  65. Janzen JJ (1970) Economic losses resulting from mastitis. A review. J Dairy Sci 53(9):1151–1160PubMedCrossRefGoogle Scholar
  66. Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82(4):640–647PubMedCrossRefGoogle Scholar
  67. Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140(3–4):360–370PubMedCrossRefGoogle Scholar
  68. Klieve AV, Bauchop T (1988) Morphological diversity of ruminal bacteriophages from sheep and cattle. Appl Environ Microbiol 54:1637–1641PubMedPubMedCentralGoogle Scholar
  69. Klieve AV, Bauchop T (1991) Phage resistance and altered growth habit in a strain of Streptococcus bovis. Microbiol Lett 80:155–160CrossRefGoogle Scholar
  70. Klieve AV, Hudman F, Bauchop T (1989) Inducible bacteriophages from ruminal bacteria. Appl Environ Microbiol 55:1630–1634PubMedPubMedCentralGoogle Scholar
  71. Klieve AV, Gregg K, Bauchop T (1991) Isolation and characterization of lytic phages from Bacteroides ruminicola ss brevis. Curr Microbiol 23:183–187CrossRefGoogle Scholar
  72. Kogut MH, Genovese KJ, Stanker LH (1999) Effect of induced molting on heterophil function in white leghorn hens. Avian Dis 43(3):538–548PubMedCrossRefGoogle Scholar
  73. LeJeune J, Kauffman M (2006) Bovine E. coli O157 supershedders: mathematical myth or meaningful monsters? In: Proceedings of the 2006 VTEC conference, p 26Google Scholar
  74. LeJeune JT, Wetzel AN (2007) Preharvest control of Escherichia coli O157 in cattle. J Anim Sci 85(Suppl 13):e73–e80PubMedCrossRefGoogle Scholar
  75. Li L, Zhang Z (2014) Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol Biol Rep 41(9):5829–5838PubMedCrossRefGoogle Scholar
  76. Loc Carrillo CM, Atterbury RJ, El-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71:6554–6563PubMedPubMedCentralCrossRefGoogle Scholar
  77. Loneragan GH, Brashears MM (2005) Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci 71(1):72PubMedCrossRefGoogle Scholar
  78. Loretz M, Stephan R, Zweifel C (2011) Antibacterial activity of decontamination treatments for cattle hides and beef carcasses. Food Control 22(3–4):347–359CrossRefGoogle Scholar
  79. Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW, Currie C, Smith DG, Allison L, Gally DL (2005) Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol 71:93–97PubMedPubMedCentralCrossRefGoogle Scholar
  80. Machado VS, Bicalho ML, Pereira RV, Caixeta LS, Bittar JH, Oikonomou G, Gilbert RO, Bicalho RC (2012) The effect of intrauterine administration of mannose or bacteriophage on uterine health and fertility of dairy cows with special focus on Escherichia coli and Arcanobacterium pyogenes. J Dairy Sci 95:3100–3109PubMedCrossRefGoogle Scholar
  81. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50(6):882–889PubMedCrossRefGoogle Scholar
  82. Mannion C, Fanning J, McLernon J, Lendrum L, Gutierrez M, Duggan S, Egan J (2012) The role of transport, lairage and slaughter processes in the dissemination of Salmonella spp. in pigs in Ireland. Food Res Int 45(2):871–879CrossRefGoogle Scholar
  83. Mather AE, Innocent GT, McEwen SA, Reilly WJ, Taylor DJ, Steele WB, Gunn GJ, Ternent HE, Reid SW, Mellor DJ (2007) Risk factors for hide contamination of Scottish cattle at slaughter with Escherichia coli O157. Prev Vet Med 80(4):257–270PubMedCrossRefGoogle Scholar
  84. Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JA, Chase-Topping M, Naylor SW, Shaw DJ, Reid SW, Gunn GJ, Woolhouse ME (2006) Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc Natl Acad Sci U S A 103(3):547–552PubMedPubMedCentralCrossRefGoogle Scholar
  85. Matthews L, Reeve R, Woolhouse ME, Chase-Topping M, Mellor DJ, Pearce MC, Allison LJ, Gunn GJ, Low JC, Reid SW (2009) Exploiting strain diversity to expose transmission heterogeneities and predict the impact of targeting supershedding. Epidemics 1(4):221–229PubMedCrossRefGoogle Scholar
  86. McLaughlin MR, King RA (2008) Characterization of Salmonella bacteriophages isolated from swine lagoon effluent. Curr Microbiol 56(3):208–213PubMedCrossRefGoogle Scholar
  87. McLaughlin MR, Balaa MF, Sims J, King R (2006) Isolation of Salmonella bacteriophages from swine effluent lagoons. J Environ Qual 35(2):522–528PubMedCrossRefGoogle Scholar
  88. Meira EB Jr, Rossi RS, Teixeira AG, Kaçar C, Oikonomou G, Gregory L, Bicalho RC (2013) The effect of prepartum intravaginal bacteriophage administration on the incidence of retained placenta and metritis. J Dairy Sci 96(12):7658–7665PubMedCrossRefGoogle Scholar
  89. Mørk T, Tollersrud T, Kvitle B, Jørgensen HJ, Waage S (2005) Comparison of Staphylococcus aureus genotypes recovered from cases of bovine, ovine, and caprine mastitis. J Clin Microbiol 43(8):3979–3984PubMedPubMedCentralCrossRefGoogle Scholar
  90. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DG, Gally DL (2003) Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohaemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71:1505–1512PubMedPubMedCentralCrossRefGoogle Scholar
  91. Niu YD, Xu Y, McAllister TA, Rozema EA, Stephens TP, Bach SJ, Johnson RP, Stanford K (2008) Comparison of fecal versus rectoanal mucosal swab sampling for detecting Escherichia coli O157:H7 in experimentally inoculated cattle used in assessing bacteriophage as a mitigation strategy. J Food Prot 71(4):691–698PubMedCrossRefGoogle Scholar
  92. Niu YD, McAllister TA, Xu Y, Johnson RP, Stephens TP, Stanford K (2009) Prevalence and impact of bacteriophages on the presence of Escherichia coli O157:H7 in feedlot cattle and their environment. Appl Environ Microbiol 75:1271–1278PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nou X, Rivera-Betancourt M, Bosilevac JM, Wheeler TL, Shackelford SD, Gwartney BL, Reagan JO, Koohmaraie M (2003) Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and enterobacteriaceae on carcasses in a commercial beef processing plant. J Food Prot 66(11):2005–2009PubMedCrossRefGoogle Scholar
  94. Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146(3–4):303–308PubMedCrossRefGoogle Scholar
  95. Oliver SP, Murinda SE (2012) Antimicrobial resistance of mastitis pathogens. Vet Clin N Am Food Anim Pract 28(2):165–185CrossRefGoogle Scholar
  96. Oliver SP, Patel DA, Callaway TR, Torrence ME (2008) ASAS centennial paper: developments and future outlook for preharvest food safety. J Anim Sci 87:419–437PubMedCrossRefGoogle Scholar
  97. Owusu-Asiedu A, Nyachoti CM, Marquardt RR (2003) Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody, zinc oxide, fumaric acid, or antibiotic1. J Anim Sci 81(7):1790–1798PubMedCrossRefGoogle Scholar
  98. Partanen KH, Mroz Z (1999) Organic acids for performance enhancement in pig diets. Nutr Res Rev 12(1):117–145PubMedCrossRefGoogle Scholar
  99. Patel J, Sharma M, Millner P, Calaway T, Singh M (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8(4):541–546PubMedCrossRefGoogle Scholar
  100. Perry GC, World’s Poultry Science Association. United Kingdom B (2006) Avian gut function in health and disease. CABI, Wallingford/Cambridge, MACrossRefGoogle Scholar
  101. Podolsky SH (2015) The antibiotic era: reform, resistance, and the pursuit of a rational therapeutics. Johns Hopkins University Press, BaltimoreGoogle Scholar
  102. Porter J, Anderson J, Carter L, Donjacour E, Paros M (2016) In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 99(3):2053–2062PubMedCrossRefGoogle Scholar
  103. Pruimboom-Brees IM, Morgan TW, Ackermann MR, Nystrom ED, Samuel JE, Cornick NA, Moon HW (2000) Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc Natl Acad Sci U S A 97:10325–10329PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rasmussen MA, Cray WC, Casey TA, Whipp SC (1993) Rumen contents as a reservoir of enterohemorrhagic Escherichia coli. FEMS Microbiol Lett 114:79–84PubMedCrossRefGoogle Scholar
  105. Rasmussen MA, Wickman TL, Cray WC, Casey TA (1999) Escherichia coli O157:H7 and the rumen environment. In: E. coli O157 in farm animals. CAB International, New York, p 39Google Scholar
  106. Rasschaert G, Michiels J, Arijs D, Wildemauwe C, De Smet S, Heyndrickx M (2012) Effect of farm type on within-herd Salmonella prevalence, serovar distribution, and antimicrobial resistance. J Food Prot 75(5):859–866PubMedCrossRefGoogle Scholar
  107. Raya RR (2006) Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl Environ Microbiol 72(9):6405–6410PubMedPubMedCentralCrossRefGoogle Scholar
  108. Raya RP, Oot RA, Moore-Maley R, Wieland S, Callaway TR, Kutter EM, Brabban AD (2011) Naturally resident and exogenously applied bacteriophages can reduce Escherichia coli O157:H7 levels in ruminant guts. Bacteriophage 1:15–24PubMedPubMedCentralCrossRefGoogle Scholar
  109. Refsum T, Holstad G, Kapperud G, Handeland K (2005) An investigation of Salmonella bacteria in waterfowls and migratory birds in Norway. Acta Vet Scand 46(1–2):95–100PubMedGoogle Scholar
  110. Ricke SC, Jones FT (2010) Perspectives on food-safety issues of animal-derived foods. University of Arkansas Press, FayettevilleCrossRefGoogle Scholar
  111. Rollin BE (2006) Food safety – who is responsible? Foodborne Pathog Dis 3:157–162PubMedCrossRefGoogle Scholar
  112. Rostagno MH (2009) Can stress in farm animals increase food safety risk? Foodborne Pathog Dis 6(7):767–776PubMedCrossRefGoogle Scholar
  113. Rostagno MH, Hurd HS, McKean JD, Ziemer CJ, Gailey JK, Leite RC (2003) Preslaughter holding environment in pork plants is highly contaminated with Salmonella enterica. Appl Environ Microbiol 69(8):4489–4494PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rozema EA, Stephens TP, Bach SJ, Okine EK, Johnson RP, Stanford K, McAllister TA (2009) Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J Food Prot 72(2):241–250PubMedCrossRefGoogle Scholar
  115. Saez AC, Zhang J, Rostagno MH, Ebner PD (2011) Direct feeding of microencapsulated bacteriophages to reduce salmonella colonization in pigs. Foodborne Pathog Dis 8(12):1269–1274PubMedCrossRefGoogle Scholar
  116. Saif YM, Fadly AM (2008) Diseases of poultry, 12th edn. Blackwell Publishing, AmesGoogle Scholar
  117. Santos TMA, Bicalho RC (2011) Complete genome sequence of vB_EcoM_ECO1230-10: a coliphage with therapeutic potential for bovine metritis. Vet Microbiol 148(2–4):267–275PubMedCrossRefGoogle Scholar
  118. Santos TMA, Gilbert RO, Caixeta LS, Machado VS, Teixeira LM, Bicalho RC (2010) Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: in vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics. J Dairy Sci 93(1):105–114PubMedCrossRefGoogle Scholar
  119. Sargeant JM, Amezcua MR, Rajic A, Waddell L (2007) Pre-harvest interventions to reduce the shedding of E. coli O157 in the faeces of weaned domestic ruminants: a systematic review. Zoonoses Public Health 54:260–277PubMedCrossRefGoogle Scholar
  120. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States – major pathogens. Emerg Infect Dis 17(1):7–15PubMedPubMedCentralCrossRefGoogle Scholar
  121. Scallan E, Mahon BE, Hoekstra RM, Griffin PM (2013) Estimates of illnesses, hospitalizations, and deaths caused by major bacterial enteric pathogens in young children in the United States. Pediatr Infect Dis J 32:217–221PubMedCrossRefGoogle Scholar
  122. Scharff RL (2012) Economic burden from health losses due to foodborne illness in the United States. J Food Prot 75(1):123–131PubMedCrossRefGoogle Scholar
  123. Seal BS (2013) Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci 92(2):526–533PubMedPubMedCentralCrossRefGoogle Scholar
  124. Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34(5):475–491PubMedCrossRefGoogle Scholar
  125. Sillankorva S, Pleteneva E, Shaburova O, Santos S, Carvalho C, Azeredo J, Krylov V (2010) Salmonella enteritidis bacteriophage candidates for phage therapy of poultry. J Appl Microbiol 108(4):1175–1186PubMedCrossRefGoogle Scholar
  126. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128(2):307–318PubMedGoogle Scholar
  127. Smith HW, Huggins M (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129(8):2659–2675CrossRefGoogle Scholar
  128. Smith HW, Huggins MB, Shaw KM (1987a) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133(5):1127–1135PubMedGoogle Scholar
  129. Smith HW, Huggins MB, Shaw KM (1987b) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133(5):1111–1126PubMedGoogle Scholar
  130. Snodgrass DR, Terzolo HR, Sherwood D, Campbell I, Menzies JD, Synge BA (1986) Aetiology of diarrhoea in young calves. Vet Rec 119(2):31–34PubMedCrossRefGoogle Scholar
  131. Sorensen MCH, van Alphen LB, Fodor C, Crowley SM, Christensen BB, Szymanski CM, Brøndsted L (2012) Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Front Cell Infect Microbiol 2:11PubMedCentralCrossRefGoogle Scholar
  132. Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE, Johnson RP (2010a) Oral delivery systems for encapsulated bacteriophages targeted Escherichia coli O157: H7 in feedlot cattle. J Food Prot 73(7):1304–1312PubMedCrossRefGoogle Scholar
  133. Stanford K, Bach SJ, Stephens TP, McAllister TA (2010b) Effect of rumen protozoa on Escherichia coli O157:H7 in the rumen and feces of specifically faunated sheep. J Food Prot 73(12):2197–2202PubMedCrossRefGoogle Scholar
  134. Swanenburg M, Urlings HAP, Keuzenkamp DA, Snijders JMA (2001) Salmonella in the lairage of pig slaughterhouses. J Food Prot 64:12–16PubMedCrossRefGoogle Scholar
  135. Toro H, Price SB, McKee AS, Hoerr FJ, Krehling J, Perdue M, Bauermeister L (2005) Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 49(1):118–124PubMedCrossRefGoogle Scholar
  136. U.S. Food and Drug Administration (2017) 2016 summary report on antimicrobials sold or distributed for use in food-producing animals. USDA.
  137. USDA/FSIS (2012) In: Service FSI (ed) Shiga toxin-producing Escherichia coli in certain raw beef products, vol 77. Federal Register, 31975–31981Google Scholar
  138. Wagenaar JA, Bergen MAPV, Mueller MA, Carlton RM, Wassenaar TM (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109(3–4):275–283PubMedCrossRefGoogle Scholar
  139. Wall SK, Zhang J, Rostagno MH, Ebner PD (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol 76(1):48–53PubMedCrossRefGoogle Scholar
  140. Whittam TS, Wilson RA (1988) Genetic relationships among pathogenic Escherichia coli of serogroup O157. Infect Immun 56(9):2467–2473PubMedPubMedCentralGoogle Scholar
  141. Winfield MD, Groisman EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:3687–3694PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhang J, Kraft BL, Pan Y, Wall SK, Saez AC, Ebner PD (2010) Development of an anti-Salmonella phage cocktail with increased host range. Foodborne Pathog Dis 7(11):1415–1419PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sarah Klopatek
    • 1
  • Todd R. Callaway
    • 2
    Email author
  • Tryon Wickersham
    • 3
  • T. G. Sheridan
    • 5
  • D. J. Nisbet
    • 4
  1. 1.Department of Animal ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of Animal and Dairy ScienceUniversity of GeorgiaAthensUSA
  3. 3.Department of Animal ScienceTexas A&M UniversityCollege StationUSA
  4. 4.Food and Feed Safety Research Unit, USDA/ARSCollege StationUSA
  5. 5.Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaUSA

Personalised recommendations