Advertisement

Crop Use of Bacteriophages

  • Jeffrey B. Jones
  • Antonet M. Svircev
  • Aleksa Ž. Obradović
Living reference work entry

Abstract

Bacteriophages have been a focus of biological control activity in various crop systems since nearly their discovery in the early 1900s. Bacteriophage population sizes must be maintained at high levels in the phyllosphere – that is, the aboveground portions of plants – for effective disease control. Phage persistence, however, is adversely affected by various physical factors such as exposure to high levels of ultraviolet light. Various strategies have been used to increase the longevity of phages in the phyllosphere. Application of phages in the evening, or the use of various compounds mixed with phage solutions, has been shown to extend phage persistence on leaf surfaces. Skim milk was used in several studies, and the combination resulted in improved control of bacterial spot of tomato disease compared to the standard bactericide treatment. Another strategy for improving disease control is to use a carrier-phage system. The system uses a nonpathogenic bacterium to deliver the bacteriophages to the flower surface and simultaneously propagate the phage populations on the stigma surface. Field-based experiments have shown that the carrier-phage system can provide a significant control of the pathogen.

References

  1. Abbasi PA, Soltani N, Cuppels DA, Lazarovits G (2002) Reduction of bacterial spot disease severity on tomato and pepper plants with foliar applications of ammonium lignosulfonate and potassium phosphate. Plant Dis 86:1232–1236CrossRefGoogle Scholar
  2. Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74(20):6230–6238CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams MH (1959) Bacteriophages. Interscience Publishers, New YorkGoogle Scholar
  4. Balogh B (2002) Strategies of improving the efficacy of bacteriophages for controlling bacterial spot of tomato. MS thesis, University of FloridaGoogle Scholar
  5. Balogh B (2006) Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. Dissertation, University of FloridaGoogle Scholar
  6. Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P et al (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954CrossRefGoogle Scholar
  7. Balogh B, Canteros BI, Stall KE, Jones JB (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92:1048–1052CrossRefGoogle Scholar
  8. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11(1):48–57CrossRefPubMedGoogle Scholar
  9. Basim H, Minsavage GV, Stall RE, Wang JF, Shanker S, Jones JB (2005) Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 71:8284–8291CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bender CL, Cooksey DA (1986) Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165:534–541CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bender CL, Cooksey DA (1987) Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 169:470–474CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bender CL, Malvick DK, Conway KE, George S, Cooksey DA (1990) Characterization of pXv10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 56:170–175PubMedPubMedCentralGoogle Scholar
  13. Boulé J, Sholberg PL, Lehman SM, O’Gorman DT, Svircev AM (2011) Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can J Plant Pathol 33(3):308–317CrossRefGoogle Scholar
  14. Brunoghe R, Maisin J (1921) Essais de therapeutique au moyen du bacteriophage du staphylocoque. C R Soc Biol 85:1020–1021Google Scholar
  15. Burrill TJ (1878) Pear blight. Trans Ill State Hortic Soc 11:114–116Google Scholar
  16. Byrne JM, Dianese AC, Ji P, Campbell HL, Cuppels DA, Louws FJ et al (2005) Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biol Control 32:408–418CrossRefGoogle Scholar
  17. Cairns B, Payne RJ (2008) Bacteriophage therapy and the mutant selection window. Antimicrob Agents Chemother 52:4344–4350CrossRefPubMedPubMedCentralGoogle Scholar
  18. Canteros BI (1999) Copper resistance in Xanthomonas campestris pv. citri. In: Proceedings of the 9th international conference on plant pathogenic bacteria, Madras, pp 455–459Google Scholar
  19. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783CrossRefPubMedGoogle Scholar
  20. Civerolo EL (1973) Relationship of Xanthomonas pruni bacteriophages to bacterial spot disease in prunus. Phytopathology 63:1279–1284CrossRefGoogle Scholar
  21. Civerolo EL, Keil HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966–1967Google Scholar
  22. Coons GH, Kotila JE (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357–370Google Scholar
  23. Díaz-Muñoz SL, Koskella B (2014) Bacteria-Phage interactions in natural environments. Adv Appl Microbiol 89:135–183CrossRefPubMedGoogle Scholar
  24. Erskine JM (1973) Characteristics of Erwinia amylovora bacteriophage and its possible role in the epidemiology of fire blight. Can J Microbiol 19:837–845CrossRefPubMedGoogle Scholar
  25. Erskine JM, Lopatecki LE (1975) In vitro and in vivo interactions between Erwinia amylovora and related saprophytic bacteria. Can J Microbiol 21:35–41CrossRefPubMedGoogle Scholar
  26. Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortic Sci 36:98–100Google Scholar
  27. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:1–12CrossRefGoogle Scholar
  28. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gašic K, Ivanovic MM, Ignjatov M, Calic A, Obradovic A (2011) Isolation and characterization of Xanthomonas euvesicatoria bacteriophages. J Plant Pathol 93:415–423Google Scholar
  30. Gill JJ, Abedon ST (2003) Bacteriophage ecology and plants. http://www.apsnet.org/publications/apsnetfeatures/Pages/BacteriophageEcology.aspx
  31. Gill JJ, Svircev AM, Smith R, Castle AJ (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goto M (1992) Fundamentals of bacterial plant pathology. Academic, San DiegoGoogle Scholar
  33. Ignoffo CM, Garcia C (1992) Combinations of environmental factors and simulated sunlight affecting activity of inclusion bodies of the Heliothis (Lepidoptera: Noctuidae) nucleopolyhedrosis virus. Environ Entomol 21:210–213CrossRefGoogle Scholar
  34. Ignoffo CM, Garcia C (1994) Antioxidant and oxidative enzyme effects on the inactivation of inclusion bodies of the Helilotis baculovirus by simulated sunlight-UV. Environ Entomol 23(4):1025–1029CrossRefGoogle Scholar
  35. Ignoffo CM, Rice WC, McIntosh AH (1989) Inactivation of non-occluded and occluded baculoviruses and baculovirus-DNA exposed to simulated sunlight. Environ Entomol 18:177–183CrossRefGoogle Scholar
  36. Ignoffo CM, Shasha BS, Sharpio M (1991) Sunlight ultraviolet protection of the Heliothis Nuclear Polyhedrosis Virus through starch-encapsulation technology. J Invert Pathol 57:134–136CrossRefGoogle Scholar
  37. Ignoffo CM, Garcia C, Saathoff SG (1997) Sunlight stability and rain-fastness of formulations of Baculovirus helilotis. Environ Entomol 26(6):1470–1474CrossRefGoogle Scholar
  38. Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73:1704–1711CrossRefPubMedPubMedCentralGoogle Scholar
  39. Iriarte FB, Obradovic A, Wernsing MH, Jackson LE, Balogh B, Hong JA (2012) Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: two possible strategies for improving bacteriophage efficacy for plant disease control. Bacteriophage 2(4): 214–224. http://www.tandfonline.com/doi/full/10.4161/bact.23530#abstractCrossRefGoogle Scholar
  40. Jackson LE, Jones JB, Momol MT, Ji P (2004) Bacteriophage: a viable bacteria control solution. In: Proceedings of first international symposium Tomato Dis Orlando, pp 21–24Google Scholar
  41. Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 36:358–367CrossRefGoogle Scholar
  42. Johnson KB (1994) Dose–response relationships and inundative biological control. Phytopathology 84:780–784Google Scholar
  43. Jones JB, Iriarte FB, Obradovic A, Balogh B, Momol MT, Jackson LE (2006) Management of bacterial spot on tomatoes with bacteriophages. In: Proceedings of the international symposium on biological control of bacterial plant diseases, 1st Darmstadt, vol 408, p 154Google Scholar
  44. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262CrossRefPubMedGoogle Scholar
  45. Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76:5557–5564CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kotila JE, Coons GH (1925) Investigations on the blackleg disease of potato. Mich Agric Exp Stn Tech Bull 67:3–29Google Scholar
  47. Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91(7):871–878CrossRefGoogle Scholar
  48. Lehman SM (2007) Development of a bacteriophage-based biopesticide for fire blight. Dissertation, Brock UniversityGoogle Scholar
  49. Lehman SM, Kropinski AM, Castle AJ, Svircev AM (2009) Complete genome of the broad-host-range Erwinia amylovora phage φEa21-4 and its relationship to Salmonella phage Felix O1. Appl Environ Microbiol 75(7):2139–2147.  https://doi.org/10.1128/aem.02352-08CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lee YA, Hendson M, Panapoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188CrossRefPubMedPubMedCentralGoogle Scholar
  51. Louws EJ, Wilson M, Cambell HL, Cuppels DA, Jones JB, Shoemaker PB et al (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488CrossRefGoogle Scholar
  52. Mallmann WL, Hemstreet CJ (1924) Isolation of an inhibitory substance from plants. Agric Res 28:599–602Google Scholar
  53. Manulis S, Zutra D, Kleitman F, Dror O, David I, Zilberstaine M et al (1998) Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn. Phytoparasitica 26:223–230CrossRefGoogle Scholar
  54. Marco GM, Stall RE (1983) Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitive to copper. Plant Dis 67:779–781CrossRefGoogle Scholar
  55. McGuire MR, Shasha BS (1995) Starch encapsulation of microbial pesticides. In: Hall FR, Barry JW (eds) Biorational pest control agents: formulation and delivery. American Chemical Society, Washington, DC, pp 229–237CrossRefGoogle Scholar
  56. McGuire MR, Shasha BS, Lewis LC, Bartelt RJ, Kinney K (1990) Field evaluation of granular starch formulations of Bacillus thuringiensis against Ostrinia nubialis (Lepidoptera: Pyralidae). J Econ Entomol 83(6):2207–2210CrossRefGoogle Scholar
  57. McGuire MR, Shasha BS, Lewis LC, Nelsen TC (1994) Residual activity of granular starch-encapsulated Bacillus thuringiensis. J Econ Entomol 87(3):631–637CrossRefGoogle Scholar
  58. McGuire MR, Behle RW, Shasha BS (1996) Starch and flour-based sprayable formulations: effect of rain fastness and solar stability of Bacillus thuringiensis. J Econ Entomol 89(5):863–869CrossRefGoogle Scholar
  59. McNeil DL, Romero S, Kandula J, Stark C, Stewart A, Larsen S (2001) Bacteriophages: a potential biocontrol agent against walnut blight (Xanthomonas campestris pv. juglandis). N Z Plant Protect 54:220–224Google Scholar
  60. Moore ES (1926) d’Herelle’s bacteriophage in relation to plant parasites. S Afr J Sci 23:306Google Scholar
  61. Murugaiyan S, Bae JY, Wu J, Lee SD, Um HY, Choi HK, Lee JH, Lee SW (2011) Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J Appl Microbiol 110(1):296–303CrossRefPubMedGoogle Scholar
  62. Nagy JK, Schwarczinger I, Kuenstler A, Pogany M, Kiraly L (2015) Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple – a possibility of enhanced control of fire blight. Eur J Plant Pathol 142(4):815–827CrossRefGoogle Scholar
  63. Obradović A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740CrossRefGoogle Scholar
  64. Obradović A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716CrossRefGoogle Scholar
  65. Obradović A, Jones JB, Balogh B, Momol MT (2008) Integrated management of tomato bacterial spot. In: Ciancio A, Mukerji G (eds) Integrated management of plant diseases caused by fungi, phytoplasma and bacteria. Springer Science + Business Media BV, Dordrecht, pp 211–223CrossRefGoogle Scholar
  66. Okabe N, Goto M (1963) Bacteriophages of plant pathogens. Annu Rev Phytopathol 1:397–418CrossRefGoogle Scholar
  67. Perera MN, Abuladze T, Li M, Woolston J, Sulakvelidze A (2015) Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 52:42–48CrossRefPubMedGoogle Scholar
  68. Primrose SB, Seeley ND, Logan K (1984) The recovery of viruses from water: methods and applications. In: Goddard M (ed) Viruses and wastewater treatment: proceedings of the international symposium on viruses and wastewater treatment, 15–17 September 1980. University of Surrey, Guildford, pp 211–234Google Scholar
  69. Ritchie D (1978) Bacteriophages of Erwinia amylovora: their isolation, distribution, characterization, and possible involvement in the etiology and epidemiology of fire blight. Dissertation, Michigan State UniversityGoogle Scholar
  70. Ritchie DF, Klos EJ (1977) Isolation of Erwinia amylovora bacteriophage from aerial parts of apple trees. Phytopathology 67:101–104CrossRefGoogle Scholar
  71. Roach DR, Sjaarda DR, Castle AJ, Svircev AM (2013) Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 79:3249–3256CrossRefPubMedPubMedCentralGoogle Scholar
  72. Roach DR, Sjaarda DR, Sjaarda CP, Ayala CJ, Howcroft B, Castle AJ, Svircev AM (2015) Absence of lysogeny in wild populations of Erwinia amylovora and Pantoea agglomerans. Microb Biotechnol 8:510–518CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schnabel EL, Jones AL (2001) Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Appl Environ Microbiol 67(1):59–64CrossRefPubMedPubMedCentralGoogle Scholar
  74. Solodovnikov YP, Pavlova LI, Emelyanov PI (1970) Prophylactic application of dry polyvalent dysentery bacteriophage with pectin in children’s preschool. Z Mikrobiol Epidemiol Immunobiol 47:131–137Google Scholar
  75. Stall RE, Loschke DC, Jones JB (1986) Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76:240–243CrossRefGoogle Scholar
  76. Storey MV, Ashbolt NJ (2001) Persistence of two model enteric viruses (B40-8 and MS-2 bacteriophages) in water distribution pipe biofilms. Water Sci Technol 43:133–138CrossRefPubMedGoogle Scholar
  77. Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93(13):3137–3146CrossRefPubMedGoogle Scholar
  78. Summers WC (2005) Bacteriophage research: early history. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 5–27Google Scholar
  79. Sundin GW, Bender CL (1993) Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 59:1018–1024PubMedPubMedCentralGoogle Scholar
  80. Svircev AM, Castle AJ, Lehman SM (2010) Bacteriophages for control of phytopathogens in food production systems. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food- and waterborne pathogens. ASM Press, Washington, DC, pp 79–102CrossRefGoogle Scholar
  81. Svircev AM, Boule J, Sholberg P, Castle AJ (2013) Erwinia amylovora (Burrill) Winslow et al., fire blight (Enterobacteriaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI, Wallingford, pp 408–412CrossRefGoogle Scholar
  82. Sykes IK, Lanning S, Williams ST (1981) The effect of pH on soil actinophage. J Gen Microbiol 122:271–280Google Scholar
  83. Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–246CrossRefGoogle Scholar
  84. Thayer PL, Stall RE (1961) A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc Fla State Hortic Soc 75:163–165Google Scholar
  85. Thomas RC (1935) A bacteriophage in relation to Stewart’s disease of corn. Phytopathology 25:371–372Google Scholar
  86. Wiggins BA, Alexander A (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23PubMedPubMedCentralGoogle Scholar
  87. Williams ST, Mortimer AM, Manchester L (1987) Ecology of soil bacteriophages. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. Wiley, New York, pp 157–179Google Scholar
  88. Wilson M, Campbell HL, Ji P, Jones JB, Cuppels DA (2002) Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology 92:1284–1292CrossRefPubMedGoogle Scholar
  89. Wittmann J, Klumpp J, Moreno Switt A, Yagubi A, Ackermann H-W, Wiedmann M, Svircev A, Nash JE, Kropinski A (2015) Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily – “Enquartavirinae”. Arch Virol 160(12):3053–3062.  https://doi.org/10.1007/s00705-015-2609-6CrossRefPubMedGoogle Scholar
  90. Yagubi AI, Castle AJ, Kropinski AM, Banks TW, Svircev AM (2014) Complete genome sequence of Erwinia amylovora bacteriophage vB_EamM_Ea35-70. Genome Announc 2:413–414CrossRefGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  • Jeffrey B. Jones
    • 1
  • Antonet M. Svircev
    • 2
  • Aleksa Ž. Obradović
    • 3
  1. 1.University of FloridaGainesvilleUSA
  2. 2.Agriculture and Agri-Food CanadaVineland StationCanada
  3. 3.Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia

Personalised recommendations