Isolation of Bacteriophages

  • Frits van Charante
  • Dominique Holtappels
  • Bob Blasdel
  • Ben BurrowesEmail author
Living reference work entry


Before any phage can be studied, or used for its biological properties, it must first be isolated. As such, isolation is a critical step – indeed, the critical step – in many explorations of phage biology and biotechnology. There are several techniques, both classical and modern, by which phages can be isolated, and selection of the proper method often depends on the intended use of the phage. In this chapter, we discuss the general principles of phage isolation and techniques to obtain pure phage isolates from a variety of sources, with a particular focus on the isolation of therapeutic phages.


  1. Abedon ST, Culler RR (2007) Optimizing bacteriophage plaque fecundity. J Theor Biol 249(3):582–592CrossRefGoogle Scholar
  2. Abedon ST, Murray KL (2013) Archaeal viruses, not archaeal phages: an archaeological dig. Archaea 2013:1–10CrossRefGoogle Scholar
  3. Abedon ST, Yin J (2008) Impact of spatial structure on phage population growth. In: Abedon ST (ed) Bacteriophage ecology population growth, evolution and impact of bacterial viruses. Cambridge, UK: Cambridge University Press, pp 94–113Google Scholar
  4. Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods in molecular biology, vol 1. Humana Press, New York, pp 161–172CrossRefGoogle Scholar
  5. Abedon ST, Hyman P, Thomas C (2003) Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 69(12):7499–7506PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ackermann HW (2011) The first phage electron micrographs. Bacteriophage 1(4):225–227PubMedPubMedCentralCrossRefGoogle Scholar
  7. Adams MH (1959) Bacteriophages. Interscience, New YorkGoogle Scholar
  8. Adaptive Phage Technologies (2018) The Science. Accessed on 10th May 2019
  9. Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J, Maes M, De Proft M, Lavigne R (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, Belonging to the “phiKMV-Like Viruses”. Appl Environ Microbiol 77(10):3443–3450PubMedPubMedCentralCrossRefGoogle Scholar
  10. Adriaenssens EM, Lehman SM, Vandersteegen K, Vandenheuvel D, Philippe DL, Cornelissen A, Clokie MRJ, García AJ, De Proft M, Maes M, Lavigne R (2012) CIM® monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434(2):265–270PubMedPubMedCentralCrossRefGoogle Scholar
  11. Anand T, Vaid RK, Bera BC, Barua S, Riyesh T, Virmani N, Yadav N, Malik P (2015) Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhea. Virus Genes 51(2):315–321PubMedCrossRefGoogle Scholar
  12. Anand T, Vaid RK, Bera BC, Singh J, Barua S, Virmani N, Rajukumar K, Yadav NK, Nagar D, Singh RK, Tripathi BN (2016) Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. J Basic Microbiol 56(4):432–437PubMedCrossRefGoogle Scholar
  13. Augustine J, Louis L, Varghese SM, Bhat SG, Kishore A (2013) Isolation and partial characterization of ΦSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J Basic Microbiol 53(2):111–120PubMedCrossRefGoogle Scholar
  14. Auling G, Mayer F, Schlegel HG (1977) Isolation and partial characterization of normal and defective bacteriophages of gram-negative hydrogen bacteria. Arch Microbiol 115(3):237–247PubMedCrossRefGoogle Scholar
  15. Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36(1):50–53PubMedCrossRefGoogle Scholar
  16. Barnet YM (1972) Bacteriophages of Rhizobium trifolii I. Morphology and host range. J Gen Virol 15(1):1–15PubMedCrossRefGoogle Scholar
  17. Basra S, Anany H, Brovko L, Kropinski AM, Griffiths MW (2014) Isolation and characterization of a novel bacteriophage against Mycobacterium avium subspecies paratuberculosis. Arch Virol 159(10):2659–2674PubMedCrossRefGoogle Scholar
  18. Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  19. Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL (2016) Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–2866PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boulanger P (2008) Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 2. Molecular and applied aspects Humana Press, New York, pp 277–238Google Scholar
  21. Breyne K, Honaker RW, Hobbs Z, Richter M, Żaczek M, Spangler T, Steenbrugge J, Lu R, Kinkhabwala A, Marchon B, Meyer E, Mokres L (2017) Efficacy and safety of a bovine-associated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol 8:2348–2348PubMedCentralCrossRefPubMedGoogle Scholar
  22. Bronfenbrenner JJ, Korb C (1925) Studies on the bacteriophage of D’Herelle. J Exp Med 42:483–497PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burchard RP, Dworkin M (1966) A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J Bacteriol 91(3):1305–1313PubMedCentralPubMedGoogle Scholar
  25. Burrowes BH, Molineux IJ, Fralick JA (2019) Directed in vitro evolution of therapeutic bacteriophages: the appelmans protocol. Viruses 11:241PubMedCentralCrossRefPubMedGoogle Scholar
  26. Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10(1):e0116571PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Washington, D.C., pp 437–487Google Scholar
  28. Ceyssens PJ, Hertveldt K, Ackermann HW, Noben JP, Demeke M, Volckaert G, Lavigne R (2008) The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 377(2):233–238PubMedCrossRefGoogle Scholar
  29. Ceyssens PJ, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D, Dougan G, Noben JP, Kropinski A, Kutter E, Lavigne R (2010) Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the “N4-like viruses”. Virology 405:26–30PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8(1):134PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chang Y, Shin H, Lee JH, Park CJ, Paik SY, Ryu S (2015) Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97. Viruses 7(10):5225–5242PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cheepudom J, Lee CC, Cai B, Meng M (2015) Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca. Front Microbiol 15(6):959Google Scholar
  33. Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, Sarker SA, Brüssow H (2004) Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186(24):8287–8294PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cihlar RL, Lessie TG, Holt SC (1978) Characterization of bacteriophage CP1, an organic solvent sensitive phage associated with Pseudomonas cepacia. Can J Microbiol 24(11):1404–1412PubMedCrossRefGoogle Scholar
  35. Cornax R, Moriñigo MA, Gonzalez-Jaen F, Alonso MC, Borrego JJ (1994) Bacteriophages presence in human faeces of healthy subjects and patients with gastrointestinal disturbances. Zentralblatt Bakteriol 281(2):214–224CrossRefGoogle Scholar
  36. Cornelissen A, Ceyssens PJ, T’Syen J, Van Praet H, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS One 6(4):e18597PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cornelissen A, Ceyssens PJ, Krylov VN, Noben JP, Volckaert G, Lavigne R (2012) Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434(2):251–256PubMedCrossRefGoogle Scholar
  38. Czajkowski R, Ozymko Z, Lojkowska E (2014) Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol 63(4):758–772CrossRefGoogle Scholar
  39. Czajkowski R, Ozymko Z, Lojkowska E (2016) Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts. Folia Microbiol 61(1):29–33CrossRefGoogle Scholar
  40. d’Herelle F (1916) Sur un bacille dysentérique atypique. Ann Inst Pasteur 30:145Google Scholar
  41. d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Paris 165:373–375Google Scholar
  42. Dedrick R et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733PubMedPubMedCentralCrossRefGoogle Scholar
  43. Delisle AL, Levin RE (1969) Bacteriophages of psychrophilic pseudomonads. II. Host range of phage active against Pseudomonas putrefaciens. Antonie Van Leeuwenhoek 35(1):318–324PubMedCrossRefGoogle Scholar
  44. Dietz AS, Yayanos AA (1978) Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl Environ Microbiol 36(6):966–968PubMedPubMedCentralGoogle Scholar
  45. Elford WJ, Andrewes CH (1932) The sizes of different bacteriophages. Br J Exp Pathol 13(5):446–456Google Scholar
  46. Ellis LF, Schlegel RA (1974) Electron microscopy of Pseudomonas φ6 bacteriophage. J Virol 14(6):1547–1551PubMedPubMedCentralGoogle Scholar
  47. El-Shibiny A, Connerton PL, Connerton IF (2005) Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl Environ Microbiol 71(3):1259–1266PubMedPubMedCentralCrossRefGoogle Scholar
  48. Endersen L, Coffey A, Neve H, McAuliffe O, Ross RP, O’Mahony JM (2013) Isolation and characterisation of six novel mycobacteriophages and investigation of their antimicrobial potential in milk. Int Dairy J 28(1):8–14CrossRefGoogle Scholar
  49. Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155PubMedCentralCrossRefPubMedGoogle Scholar
  50. Espejo RT, Canelo ES (1968) Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34(4):738–747PubMedCrossRefGoogle Scholar
  51. Fay D, Bowman BU (1978) Structure of native and chloroform-methanol-treated mycobacteriophage R1. J Virol 27(2):432–435PubMedCentralPubMedGoogle Scholar
  52. Fortier L-C, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fulton J, Douglas T, Young M (2009) Isolation of viruses from high temperature environments. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages. New York, NY, USA: Springer, pp 43–54Google Scholar
  54. García-Aljaro C, Muniesa M, Jofre J (2018) Isolation of bacteriophages of the anaerobic bacteria bacteroides. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 11–22Google Scholar
  55. Ghugare GS, Nair A, Nimkande V, Sarode P, Rangari P, Khairnar K (2016) Membrane filtration immobilization technique – a simple and novel method for primary isolation and enrichment of bacteriophages. J Appl Microbiol 122(2):531–539PubMedCrossRefGoogle Scholar
  56. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14CrossRefGoogle Scholar
  57. Gill J, Sabour P, Leslie K, Griffiths M (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101:377–386PubMedCrossRefGoogle Scholar
  58. Greene J, Goldberg RB (1985) Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the Streptomycetes. Microbiology 131(9):2459–2465CrossRefGoogle Scholar
  59. Harper D, Blake K (2018) Therapeutic bacteriophage compositions. Patent. International Publication Number WO 2013/164640 A1Google Scholar
  60. Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284PubMedCentralCrossRefPubMedGoogle Scholar
  61. Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S (2012) Development of a high throughput assay for indirectly measuring phage growth using the OmniLog™ system. Bacteriophage 2:159–167PubMedPubMedCentralCrossRefGoogle Scholar
  62. Heuer OE, Pedersen K, Andersen JS, Madsen M (2001) Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Lett Appl Microbiol 33(4):269–274PubMedCrossRefGoogle Scholar
  63. Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK (2014) Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage. Extremophiles 18(2):261–270CrossRefGoogle Scholar
  64. Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8:e57355PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hyman PY, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248PubMedCrossRefGoogle Scholar
  66. Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64(2):575–580PubMedPubMedCentralGoogle Scholar
  67. Ji X, Zhang C, Fang Y, Zhang Q, Lin L, Tang B, Wei Y (2015) Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 30(1):52–58PubMedCrossRefGoogle Scholar
  68. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200CrossRefGoogle Scholar
  69. Kang W, Sarkar S, Lin ZS, McKenney S, Konry T (2019) Ultra-fast parallelized microfluidic platform for antimicrobial susceptibility testing of gram positive and negative bacteria. Anal Chem 91(9):6242–6249PubMedCrossRefGoogle Scholar
  70. Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K, Alavidze Z (2013) Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca. Curr Microbiol 66(3):251–258PubMedCrossRefGoogle Scholar
  71. Koser SA (1926) Action of the bacteriophage on a thermophilic Bacillus. Proc Soc Exp Biol Med 24(1):109–111CrossRefGoogle Scholar
  72. Kropinski AM, Mazzocco A, Waddell TE, Lingoh E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Washington, D.C., pp 69–76CrossRefGoogle Scholar
  73. Krylov V, Shaburova O, Krylov S, Pleteneva E (2012) A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses 5:15–53PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kuo TT, Huang TC, Chow TY (1969) A filamentous bacteriophage from Xanthomonas oryzae. Virology 39(3):548–555CrossRefGoogle Scholar
  75. Kutter EM, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam J (ed) Molecular biology of bacteriophage T4. American Society of Microbiology, Washington, DC, pp 406–418Google Scholar
  76. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86PubMedCrossRefGoogle Scholar
  77. Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M (2017) Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 168(3):194–207PubMedCrossRefGoogle Scholar
  78. Lamont I, Brumby AM, Egan JB (1989) UV induction of coliphage 186: prophage induction as an SOS function. PNAS 86(14):5492–5496CrossRefGoogle Scholar
  79. Li M, Wang J, Zhang Q, Lin L, Kuang A, Materon LA, Ji X, Wei Y (2016) Isolation and characterization of the lytic cold-active bacteriophage MYSP06 from the Mingyong Glacier in China. Curr Microbiol 72(2):120–127PubMedCrossRefGoogle Scholar
  80. Li Y, Yang X, Zhao W (2017) Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol Translating Life Sciences Innovation 22:585–608CrossRefGoogle Scholar
  81. Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ (2010) Isolation and characterization of ϕAB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161(4):308–314PubMedCrossRefGoogle Scholar
  82. Lin L, Han J, Ji X, Hong W, Huang L, Wei Y (2011) Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 15(2):253–258PubMedCrossRefGoogle Scholar
  83. Liu B, Wu S, Song Q, Zhang X, Xie L (2006) Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol 53(2):163–166PubMedCrossRefGoogle Scholar
  84. Łobocka M, Hejnowicz MS, Gagała U, Weber-Dabrowska B, Wegrzyn G, Dadlez M (2014) Phage Therapy: Current Research and Applications. In: Borysowski J, Miedzybrodzki R, Górski A (eds) The first step to bacteriophage therapy – how to choose the correct phage phage therapy: current research and applications, Norfolk, UK: Caister Academic Press pp 23–69Google Scholar
  85. Loc Carrillo CM, Connerton PL, Pearson T, Connerton IF (2007) Free-range layer chickens as a source of Campylobacter bacteriophage. Antonie Van Leeuwenhoek 92(3):275PubMedCrossRefGoogle Scholar
  86. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114PubMedPubMedCentralCrossRefGoogle Scholar
  87. Locus Biosciences (2018) Locus biosciences acquires EpiBiome’s high-throughput discovery platform to enhance its global leadership in CRISPR-engineered phage therapeutics. Accessed on 9th May 2019
  88. Lopez R, Ronda C, Tomasz A, Portoles A (1977) Properties of “diplophage”: a lipid-containing bacteriophage. J Virol 24(1):201–210PubMedPubMedCentralGoogle Scholar
  89. Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK (2013) Single cell antimicrobial susceptibility testing by confined microchannels and Electrokinetic loading. Anal Chem 85:3971–3976. Scholar
  90. Luhtanen AM, Eronen-Rasimus E, Kaartokallio H, Rintala JM, Autio R, Roine E (2014) Isolation and characterization of phage–host systems from the Baltic Sea ice. Extremophiles 18(1):121–130PubMedCrossRefGoogle Scholar
  91. Maal KB, Delfan AS, Salmanizadeh S (2015) Isolation and identification of two novel Escherichia coli bacteriophages and their application in wastewater treatment and coliform's phage therapy. Jundishapur J Microbiol 8(3):e14945Google Scholar
  92. Machuca P, Daille L, Vinés E, Berrocal L, Bittner M (2010) Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol 76(21):7243–7250PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mapes AC, Trautner BW, Liao KS, Ramig RF (2016) Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage 6(1):e1096995PubMedPubMedCentralCrossRefGoogle Scholar
  94. Markel DE, Eklund C (1974) Isolation, characterization, and classification of three bacteriophage isolates for the genus Levinea. Int J Syst Evol Microbiol 24(2):230–234Google Scholar
  95. Marks TJ, Hamilton PT (2014) Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus. Arch Virol 159(10):2771–2775PubMedCrossRefGoogle Scholar
  96. Matsuzaki S, Uchiyama J, Takemura-Uchiyama I, Ujihara T, Daibata M (2018) Isolation of bacteriophages for fastidious bacteria. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 3–10Google Scholar
  97. Mattila S, Ruotsalainen P, Jalasvuori M (2015) On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 6.
  98. Melo LD, Sillankorva S, Ackermann HW, Kropinski AM, Azeredo J, Cerca N (2014) Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. J Gen Virol 95(2):506–515CrossRefGoogle Scholar
  99. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944PubMedPubMedCentralCrossRefGoogle Scholar
  100. Millard AD (2009) Isolation of cyanophages from aquatic environments. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 33–42Google Scholar
  101. Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10(3):e0118557CrossRefGoogle Scholar
  102. Muruga BN, Wagacha J, Kabaru J, Amugune N, Duboise M (2013) Isolation of bacteriophage infecting haloalkaliphilic bacteria in Lake Magadi, Kenya International. J Innov Res Dev 2:10Google Scholar
  103. Nivas D, Ramesh N, Krishnakumar V, Rajesh P, Solomon EK, Kannan VR (2015) Distribution, isolation and characterization of lytic bacteriophages against multi-drug resistant and extended-spectrum of Β-lactamase producing pathogens from hospital effluents. Asian J Pharm Clin Res 8(2):384–389Google Scholar
  104. O'flaherty S, Coffey A, Meaney W, Fitzgerald G, Ross R (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279PubMedCrossRefGoogle Scholar
  105. Olsen RH, Metcalf ES, Todd JK (1968) Characteristics of bacteriophages attacking psychrophilic and mesophilic pseudomonads. J Virol 2(4):357–364PubMedPubMedCentralGoogle Scholar
  106. Olsen RH, Siak JS, Gray RH (1974) Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol 14(3):689–699PubMedCentralPubMedGoogle Scholar
  107. Owens J, Barton MD, Heuzenroeder MW (2013) The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet Microbiol 162(1):144–150PubMedCrossRefGoogle Scholar
  108. Paolozzi L, Ghelardini P (2006) The bacteriophage Mu. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 469–496Google Scholar
  109. Parfitt T (2005) Georgia: an unlikely stronghold for bacteriophage therapy. Lancet 365:2166–2167PubMedCrossRefGoogle Scholar
  110. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100(5):2141–2151PubMedCrossRefGoogle Scholar
  111. Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, Corte-Real S, Debarbieux L, Dublanchet A, De Vos D, Gabard J, Garcia M, Goderdzishvili M, Górski A, Hardcastle J, Huys I, Kutter E, Lavigne R, Merabishvili M, Olchawa E, Parikka KJ, Patey O, Pouilot F, Resch G, Rohde C, Scheres J, Skurnik M, Vaneechoutte M, Van Parys L, Verbeken G, Zizi M, Van den Eede G (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32(7):2173–2179PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pirnay JP, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, Fauconnier A (2018) The magistral phage. Viruses 10(2):e64PubMedCrossRefGoogle Scholar
  113. Pootjes CF, Mayhew RB, Korant BD (1966) Isolation and characterization of Hydrogenomonas facilis bacteriophages under heterotrophic growth conditions. J Bacteriol 92(6):1787–1791PubMedPubMedCentralGoogle Scholar
  114. Popova AV, Zhilenkov EL, Myakinina VP, Krasilnikova VM, Volozhantsev NV (2012) Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol Lett 332:40–46. Scholar
  115. Raya RR, Hébert EM (2009) Isolation of phage via induction of lysogens. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 23–32Google Scholar
  116. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci 98(23):13341–13345CrossRefGoogle Scholar
  118. Rombouts S, Volckaert A, Venneman S, Declercq B, Vandenheuvel D, Allonsius CN, Van Malderghem C, Jang HB, Briers Y, Noben JP, Klumpp J, Van Vaerenbergh J, Maes M, Lavigne R (2016) Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. Porri. Front Microbiol 7:279PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15(6):1449–1453PubMedPubMedCentralGoogle Scholar
  121. Salifu SP, Casey SA, Foley S (2013) Isolation and characterization of soilborne virulent bacteriophages infecting the pathogen Rhodococcus equi. J Appl Microbiol 114(6):1625–1633PubMedCrossRefGoogle Scholar
  122. Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148PubMedPubMedCentralCrossRefGoogle Scholar
  123. Seeley ND, Primrose SB (1982) The isolation of bacteriophages from the environment. J Appl Bacteriol 53:1–17PubMedCrossRefGoogle Scholar
  124. Sillankorva S (2018) Isolation of bacteriophages for clinically relevant bacteria. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 23–30Google Scholar
  125. Solonenko SA, Sullivan MB (2013) Preparation of metagenomic libraries from naturally occurring marine viruses. In: DeLong EF (ed) Methods in enzymology, vol 531. Cambridge, MA, USA: Elsevier, pp 143–165Google Scholar
  126. Spencer R (1955) A marine bacteriophage. Nature 175(4459):690–691PubMedCrossRefGoogle Scholar
  127. Stedman K, Porter M, Dyall-Smith M (2009) The isolation of viruses infecting Archaea. In: Wilhelm S, Weinbauer M, Suttle C (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco, TX, USA, pp 57–64CrossRefGoogle Scholar
  128. Steinberg VI, Hart EJ, Handley J, Goldberg ID (1976) Isolation and characterization of a bacteriophage specific for Neisseria perflava. J Clin Microbiol 4(1):87–91PubMedPubMedCentralGoogle Scholar
  129. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186(4814):1241–1243CrossRefGoogle Scholar
  130. Tylenda CA, Calvert C, Kolenbrander PE, Tylenda A (1985) Isolation of Actinomyces bacteriophage from human dental plaque. Infect Immun 49(1):1–6PubMedCentralPubMedGoogle Scholar
  131. Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2008) Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278(2):200–206CrossRefGoogle Scholar
  132. Van Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 15–21Google Scholar
  133. Verma H, Pramod D, Abbas M, Prajapati A, Ramchandra D, Rawat M (2013) Isolation and partial characterization of lytic phage against Salmonella Abortusequi. Veterinary World 6(2):72–75CrossRefGoogle Scholar
  134. Vidaver AK, Koski RK, Van Etten JL (1973) Bacteriophage φ6: a lipid-containing virus of Pseudomonas phaseolicola. J Virol 11(5):799–805PubMedPubMedCentralGoogle Scholar
  135. Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255(1):117–124CrossRefGoogle Scholar
  136. Ward TE, Bruhn DF, Shean ML, Watkins CS, Bulmer D, Winston V (1993) Characterization of a new bacteriophage which infects bacteria of the genus Acidiphilium. J Gen Virol 74(11):2419–2425PubMedCrossRefGoogle Scholar
  137. Weber-Dabrowska B, Jonczyk-Matysiak E, Zaczek M, Lobocka M, Lusiak-Szelachowska M, Gorski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177. Scholar
  138. Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45(1):15–29CrossRefGoogle Scholar
  139. Wittmann J, Dreiseikelmann B, Rohde C, Rohde M, Sikorski J (2014) Isolation and characterization of numerous novel phages targeting diverse strains of the ubiquitous and opportunistic pathogen Achromobacter xylosoxidans. PLoS One 9(1):e86935PubMedCentralCrossRefPubMedGoogle Scholar
  140. Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM (2009) Methods for the isolation of viruses from environmental samples. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 3–14Google Scholar
  141. Xie Y, Wahab L, Gill J (2018) Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses 10:189PubMedCentralCrossRefPubMedGoogle Scholar
  142. Yakimovich A, Andriasyan V, Witte R, Wang I-H, Prasad V, Suomalainen M, Greber UF (2015) Plaque2. 0 – a high-throughput analysis framework to score virus-cell transmission and clonal cell expansion. PLoS One 10:e0138760PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40(3):734–744PubMedCrossRefGoogle Scholar
  144. Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265–274PubMedCrossRefGoogle Scholar
  145. Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yehle CO, Doi RH (1967) Differential expression of bacteriophage genomes in vegetative and sporulating cells of Bacillus subtilis. J Virol 1(5):935–947PubMedPubMedCentralGoogle Scholar
  147. Yeung MK, Kozelsky CS (1997) Transfection of Actinomyces spp. by genomic DNA of bacteriophages from human dental plaque. Plasmid 37(2):141–153PubMedCrossRefGoogle Scholar
  148. Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151(4):663–679PubMedCrossRefGoogle Scholar
  149. Yu P, Mathieu J, Li M, Dai Z, Alvarez PJ (2016) Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol 82(3):808–815PubMedCentralCrossRefPubMedGoogle Scholar
  150. Zhou W, Feng Y, Zong Z (2018) Two new lytic bacteriophages of the myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:850–850. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frits van Charante
    • 1
  • Dominique Holtappels
    • 2
  • Bob Blasdel
    • 2
    • 3
  • Ben Burrowes
    • 4
    Email author
  1. 1.Ghent UniversityGhentBelgium
  2. 2.Laboratory of Gene TechnologyLeuvenBelgium
  3. 3.Vésale PharmaNoville-Sur-MehaigneBelgium
  4. 4.Evolution BiotechnologiesSharnbrookUK

Personalised recommendations