Advertisement

UV Exposure

  • Peter Knuschke
Living reference work entry

Abstract

UV radiation is optical radiation in the electromagnetic spectrum between the wavelengths λ = 100 nm and λ = 400 nm. For orientation purposes, the waveband range is subdivided into UV-C: 100–280 nm, UV-B: 280–315 nm, and UV-A: 315–400 nm.

The several artificial sources of UV radiation feature various wavelength-dependent intensity distributions (spectra). The spectrum of the sun – the source of natural UV radiation – varies periodical diurnally and seasonally, influenced by further factors.

The photobiological or actinic response of human tissue to UV exposure is highly wavelength dependent. This response is being described by a so-called action spectrum characteristic for each photobiological effect such as the UV erythema. The action spectrum may vary within and between the UV waveband ranges in orders of magnitude.

The diversity of UV spectra or the change in the spectral distribution on one hand and the marked wavelength dependencies of the action spectra on the other make actinic UV measurement to a difficult matter. It results often in mismeasurements.

In everyday life, humans are permanently exposed to solar UV radiation. In contrast to other noxious, men cannot avoid a basic UV exposure level. Therefore, it is necessary to limit additional UV exposures as well occupational as nonoccupational to reduce the risks from acute and chronic actinic injuries.

To restrict occupational UV exposures numerous recommendations, governmental regulations such as exposure limits or guidelines to evaluate workplaces have been prepared.

Outdoor workers cumulate about two to three times higher annual UV exposure compared to indoor workers. The natural UV intensity is restricted to the maximum of the equatorial sun. In contrast, there exist artificial UV sources causing intensities in a way that the limit value of an 8-h workday is met within a time span of a few seconds or less.

Keywords

Ultraviolet UV-radiation UV-exposure UV-sources Solar UV Artificial UV Actinic quantity Action spectrum Skin phototype MED SED UV-radiometer Personal UV-dosimeter UV-exposed workplace Exposure limit values Personal UV-monitoring Personal UV-dose Outdoor worker Indoor worker UV-protection measures 

References

  1. ACGIH (2008) Threshold limit values (TVLs) for chemical substances and physical agents and biological exposure indices (BEIs). American Conference of Governmental Industrial Hygenists (ACGIH), CincinnatiGoogle Scholar
  2. Aengenvoort B, Schwaß D (2008) UV-Strahlenexpositionen an Arbeitsplätzen. die BG 05/08: 98–104, Table 1Google Scholar
  3. Bauer A, Diepgen TL, Schmitt J (2011) Is occupational UV-irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiologic literature. Br J Dermatol 165:612–625PubMedGoogle Scholar
  4. Bech-Thomson N, Wulf HC (1996) Photoprotection due to pigmentation and epidermal thickness after repeated exposure to solar ultraviolet light and psoralen plus ultraviolet A therapy. Photodermatol Photoimmunol Photomed 11(5–6):213–218Google Scholar
  5. Blum HF (1955) Sunburn. In: Hollaender A (ed) Radiation biology, vol II ultraviolet and related radiations. McGraw-Hill, New YorkGoogle Scholar
  6. BMAS (2013) Wissenschaftliche Begründung des Ärztlichen Sachverständigenbeirats “Berufskrankheiten” beim Bundesministerium für Arbeit und Soziales. GMBl 35:671–693Google Scholar
  7. Bruhls WGA, Slaper H, van der Leun JC et al (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelength. Photochem Photobiol 40:485–494CrossRefGoogle Scholar
  8. Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ (2010) Vitamin D: metabolism. Endocrinol Metab Clin N Am 39(2):243–253CrossRefGoogle Scholar
  9. CIE Publication 17.4:1987 (1987) International lighting vocabulary. IEC Publication 50, chapter 845: illuminationGoogle Scholar
  10. CIE S 013/E:2003 (2003) International Standard Global Solar UV IndexGoogle Scholar
  11. CIE S 017/E (2011) ILV: international lighting vocabulary. CIE Central Bureau, Vienna http://eilv.cie.co.at/term/1367Google Scholar
  12. CIE S 019/E: 2006a (2006a) Photocarcinogenesis action spectrum (non-melanoma skin cancers). CIE Central Bureau, ViennaGoogle Scholar
  13. CIE Technical report (2006b) Action spectrum for the production of previtamin D3 in human skin. CIE 174:1–12Google Scholar
  14. Davis A, Deane GW, Diffey BL (1976) Possible dosimeter for ultraviolet radiation. Nature 261:169–170CrossRefPubMedGoogle Scholar
  15. De Gruijl FR (1999) Skin cancer and solar UV radiation. Eur J Cancer 35:2003–2009CrossRefPubMedGoogle Scholar
  16. De Gruijl FR, Sternborg HJCM, Forbes PD, Davies RE, Cole C, Kerlfkens G, von Weelden H, van der Leun JC (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53:53–60PubMedGoogle Scholar
  17. Diepgen TL, Brandenburg S, Aberer W et al (2014) Skin cancer induced by natural UV-radiation as an occupational disease—requirements for its notification and recognition. J Dtsch Dermatol Ges 12:1102–1106PubMedGoogle Scholar
  18. Diffey BL (1984) Using a microcomputer program to avoid a sunburn. Photo-Dermatology 1:45–51PubMedGoogle Scholar
  19. Diffey BL, Kervin M, Davis A (1977) The anatomical distribution of sunlight. Br J Dermatol 97:407–409CrossRefPubMedGoogle Scholar
  20. Diffey BL, Gibson CJ, Haylock R, McKinlay AF (1996) Outdoor ultraviolet exposure of children and adolescents. Br J Dermatol 134:1030–1034CrossRefPubMedGoogle Scholar
  21. DIN 5031–10:2018–03 (2018) Optical radiation physics and illuminating engineering – part 10: photobiologically effective radiation, quantities, symbols and actions. Table 1Google Scholar
  22. EN 14255–1:2005:E (2005) Measurement and assessment of personal exposures to incoherent optical radiation – part 1: ultraviolet radiation emitted by artificial sources in the workplace, Annex E “Examples of protective measures”Google Scholar
  23. EN 14255–3:2008:E (2008) Measurement and assessment of personal exposures to incoherent optical radiation – part 3: UV-Radiation emitted by the sunGoogle Scholar
  24. EN 14255–4:2006:E (2006) Measurement and assessment of personal exposures to incoherent optical radiation – part 4: terminology and quantities used in UV-, visible and IR-exposure measurementsGoogle Scholar
  25. EU-Directive 2006/25/EC (2006) Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (artificial optical radiation)Google Scholar
  26. FDA 21 CFR 1040.20 (1986) Guidance policyGoogle Scholar
  27. Feister U, Grewe R (1995) Spectral albedo measurements in the UV and visible region over different types of surfaces. Photochem Photobiol 62:736–744CrossRefGoogle Scholar
  28. Fitzpatrick TB (1975) Soleil et peau. J Med Estet 2:33CrossRefGoogle Scholar
  29. Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124:869CrossRefPubMedGoogle Scholar
  30. Fitzpatrick TB, Bolognia JI (1994/1995) Human melanin pigmentation: rule in patogenesis of pathogenesis of cutaneous melanoma. In: Ziese L, Chedekel MR, Fitzpatrick TB (eds) Melanin: its role in human photoprotection. Valdenmar, Overland Park, p 177–182Google Scholar
  31. Gies HP, Roy CR, Elliott G (1992) Ultraviolet radiation protection factors for personal protection in both occupational and recreational situations. Radiat Proat Aust 10:59–66Google Scholar
  32. Godar DE (2005) Invited review: UV dose worldwide. Photochem Photobiol 81:736–749CrossRefPubMedGoogle Scholar
  33. Häder DP, Worrest RC (1991) Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. Photochem Photobiol 53:717–725CrossRefGoogle Scholar
  34. Herlihy E, Gies PH, Roy CR et al (1994) Personal dosimetry of solar UV radiation for different outdoor activities. Photochem Photobiol 60:288–294CrossRefPubMedGoogle Scholar
  35. Holman CDJ, Gibson IM, Stephenson M et al (1983) Ultraviolet radiation of human body sites in relation to occupation and outdoor activities. Clin Exp Dermatol 8:269–277CrossRefPubMedGoogle Scholar
  36. ICNIRP (2004) International Commission for Nonionizing Radiation Protection: guidelines on limits to exposure of ultraviolet radiation of wavelength between 180 nm and 400 nm (incoherent optical radiation). Health Phys 87:171–186CrossRefGoogle Scholar
  37. ICNIRP 14/2007 (2007) Protecting workers from ultraviolet radiation. In: Vecchia P, Hietanen M, Stuck BE, van Deventer E, Niu S (eds) ICNIRP, Munich/Germany, pp 21, 22. ISBN 978-3-934994-07-2, https://www.icnirp.org/en/publications/article/uv-protection-ofworkers-2007.html
  38. ISO 17166/CIE S 007/E (1999) Erythema reference action spectrum and standard erythema doseGoogle Scholar
  39. Jung EG, Anton-Lamprecht I (1971) Untersuchung über Albinismus. Arch Derm Forsch 240:123–137CrossRefGoogle Scholar
  40. Knuschke P (2011) Forschungsergebnisse auf dem Gebiet der beruflichen solaren UV-Expositionen. Dermatol Beruf Umwelt 59:78–83CrossRefGoogle Scholar
  41. Knuschke P, Krins A (1996) Estimation of the photobiological UV-exposure level in older and modern Trams by transmission measurements of the car glass. Unpublished report on a common study with the Dresden public transport provider DVB, Dept. of Dermatology, TU Dresden, Germany (in German: Abschätzung des photobiologischen UV-Expositionslevels in Fahrerkabinen von Straßenbahn- und Stadtbahnwagen aus Transmissionsmessungen an der Verglasung)Google Scholar
  42. Knuschke P, Krins A (1997) Personal UV-dosimetry in tram operators of the Dresden public transport provider DVB in early summer 1997. Unpublished report on a common study with the Dresden public transport provider DVB, Dept. of Dermatology, TU Dresden, Germany (in German: UV-Personendosimetrie bei fahrendem Personal der DVB im Frühsommer 1997)Google Scholar
  43. Knuschke P, Krins A (2000) Personal UV dosimetry using polysulphonfilms as a UV sensor. Final Report on BMBF-Project 07UVB54B, Universitätsbibliothek Hannover und Technische Informationsbibliothek F 00 B 1544 (in German)Google Scholar
  44. Knuschke P, Kurpiers M, Koch R et al (2004) Mean individual UV-exposures in the population. Final Report on BMBF-project 07UVB54C/3, TIB Hannover F05B898 (in German)Google Scholar
  45. Knuschke P, Unverricht I, Ott G et al (2007) Personenbezogene Messung der UV-Exposition von Arbeitnehmern im Freien. Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Forschung, F 1777, Dortmund, Berlin, Dresden. ISBN 978-3-88261-060-4Google Scholar
  46. Knuschke P, Janßen M, Ott G (2008) Referenzbasis solarer UV-Expositionen zur Bewertung der Expositionslevel in der Bevölkerung und an Arbeitsplätzen im Freien. In: Kaase H, Serick F (eds) Licht und Gesundheit. Berlin. p 24–29. ISBN 3-9807635-0-3Google Scholar
  47. Knuschke P, Unverricht I, Aschoff R et al (2010) Untersuchung des Eigenschutzes der Haut gegen solare UV-Strahlung bei Arbeitnehmern im Freien. Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Forschung, F 1986. Dortmund, Berlin, Dresden. ISBN 978-3-88261-121-2Google Scholar
  48. Knuschke P, Ott G, Bauer A et al (2015) Schutzkomponenten bei solarer UV-Exposition. Dortmund/Berlin/Dresden: Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Forschung F 2036. ISBN 978-3-88261-154-0Google Scholar
  49. Krins A, Dörschel B, Henniger J, Knuschke P (1998) Mathematical description of measuring effects in personal UV-dosemeters on the example of polysulphone film. Radiat Prot Dosim 78:195–204CrossRefGoogle Scholar
  50. Krins A, Bolsée D, Dörschel B, Gillotay D, Knuschke P (2000) Angular dependence of the efficiency of the UV sensor polysulphone film. Radiat Prot Dosim 87:261–266CrossRefGoogle Scholar
  51. Krins A, Dörschel B, Knuschke P, Seidlitz HK, Thiel S (2001) Determination of the calibration factor of polysulphone film UV dosemeters for terrestrial solar radiation. Radiat Prot Dosim 95:345–352CrossRefGoogle Scholar
  52. Lehmann B (2005) The vitamin D3 pathway in human skin and its role for regulation of biological processes. Photochem Photobiol 81(6):1246–1251CrossRefPubMedGoogle Scholar
  53. Longstreth J, de Gruijl FR, Kripke ML et al (1998) Health risks. J Photochem Photobiol B 46:20–39CrossRefPubMedGoogle Scholar
  54. MacLaughlin JA, Anderson RR, Holick MF (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 216:1001–1003CrossRefPubMedGoogle Scholar
  55. Mahler V, Aalto-Korte, Alfonso JH (2017) Occupational skin diseases: actual state analysis of patient management pathways in 28 European countries. JEADV 31(4):12–30PubMedGoogle Scholar
  56. Miescher G (1930) Das Problem des Lichtschutzes und der Lichtgewöhnung. Strahlentherapie 35:403–443 (in German)Google Scholar
  57. Munakata N (1981) Killing and mutagenic action of sunlight upon Bacillus subtillis spores: a dosimetric system. Mutat Res 82:263–268CrossRefPubMedGoogle Scholar
  58. Pathak MA, Jimbow K, Szabo G, Fitzpatrick TB (1976) Sunlight and melanin pigmentation. In: Smith KC (ed) Photochemical and photobiological reviews, vol I. Plenum press, New York, pp 211–239CrossRefGoogle Scholar
  59. Pathak MA, Nghiem P, Fitzpatrick TB (1999) Chapter 138, acute and chronic effects of the sun. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI, Fitzpatrick TB (eds) Fitzpatrick’s dermatology in general medicine, vol 1. McGraw-Hill, New York. ISBN 0-07-021942-7Google Scholar
  60. Regan JD, Carrier WL, Gucinski H et al (1992) DNA as a solar dosimeter in the ocean. Photochem Photobiol 56:35–42CrossRefPubMedGoogle Scholar
  61. Rontó G, Gáspár S, Bérces A (1992) Phages T7 in biological UV dose measurements. J Photochem Photobiol B 12:285–294CrossRefPubMedGoogle Scholar
  62. RPS 12 (2006) Radiation protection standard for occupational exposure to ultraviolet radiation. Australian Radiation Protection and Nuclear Safety Agency (ARPNSA), Australia. ISBN 978-0-9758169Google Scholar
  63. Schmitt J, Seidler A, Diepgen TL et al (2011) Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. Br J Dermatol 164:291–307CrossRefPubMedGoogle Scholar
  64. Schmitt J, Haufe E, Trautmann F et al (2018a) Occupational UV-exposure is a major risk factor for basal cell carcinoma: results of the population-based case-control study FB-181. JOEM 60(1):36–43.  https://doi.org/10.1097/JOM.0000000000001217CrossRefPubMedGoogle Scholar
  65. Schmitt J, Haufe E, Trautmann F et al (2018b) Is UV-exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181. Br J Dermatol 178(2):462–472.  https://doi.org/10.1111/bjd.15906CrossRefPubMedGoogle Scholar
  66. Schwarz T (2009) The dark and the sunny sides of UVR-induced immunosuppression: photoimmunology revisited. J Invest Dermatol.  https://doi.org/10.1038/jid.2009.217
  67. Stern RS, Weinstein MC, Baker SG (1986) Risk reduction for nonmelanoma skin cancer with childhood sunscreen use. Arch Dermatol 122:537–545CrossRefPubMedGoogle Scholar
  68. Strehl B (2014) Transmissionsmessung an Fahrzeugscheiben zur Bewertung der Strahlendurchlässigkeit von UV-Strahlung. BSc Thesis, Hochschule Koblenz/University of Applied Science, GermanyGoogle Scholar
  69. Terenetskaya IP (1994) Provitamin D photoisomerization as possible UVB monitor: kinetic study using tunable dye laser. In: Sliney DH, Belkin M (eds) Proc SPIE Bellingham WA/USA, 2134B: ultraviolet radiation hazards. pp 135–140.  https://doi.org/10.1117/12.180825
  70. Thieden E, Philipsen PA, Heydenreich J et al (2004) UV radiation exposure related to age, sex, occupation, and sun behavior based on time-stamped personal dosimeter readings. Arch Dermatol 140:197–203CrossRefPubMedGoogle Scholar
  71. Tsyganenko NM, Kiseleva MN, Alekseyev AB et al (1987) Photodimerisation of uracil film and its possible application for dosimetry of genetically active ultraviolet radiation. Biofisika (USSR) 32:7–11Google Scholar
  72. Tyrell RM, Souza-Neto A (1981) Lethal effects of natural solar ultraviolet radiation in repair proficient and repair deficient strains of Escherichia coli: actions and interactions. Photochem Photobiol 34:331–337CrossRefGoogle Scholar
  73. Weber M, Uller A, Schulmeister K et al (2007) Outdoor workers acceptance of personal protective measures against solar ultraviolet radiation. Photochem Photobiol 283:1471–1480CrossRefGoogle Scholar
  74. WHO (2002) Global solar UV index – a practical guide. A joint recommendation of WHO, WMO, UN Environment Programme and ICNIRP. ISBN 92 4 159007 6, NLM classification: QT 162.U4, Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Genf 27, SchweizGoogle Scholar
  75. Willis IE (1988) Photosensitivity reaction in black skin. Dermatol Clin 6(3):369–375CrossRefPubMedGoogle Scholar
  76. Wittlich M, Westerhausen S, Kleinespel P et al (2016) An approximation of occupational lifetime UVR exposure: algorithm for retrospective assessment and current measurements. JEADV 30(3):27–33PubMedGoogle Scholar
  77. Young A (1997) Chromophore in human skin. Phys Med Biol 42:789–802CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dermatology, Carl Gustav Carus Faculty of MedicineTechnische Universität DresdenDresdenGermany

Personalised recommendations