Prediction of Skin Irritation by Noninvasive Bioengineering Methods

  • Ron A. TupkerEmail author
Living reference work entry


The ultimate goal of skin irritancy testing is to understand and predict chronic irritant contact dermatitis. Visual scoring constitutes the basis of evaluating skin irritancy testing.

By using noninvasive bioengineering methods, various aspects of skin irritation and inflammation can be quantified, both in subclinically and clinically involved skin.

The result of irritancy testing may depend upon the type of testing model in which compounds are brought into contact with the skin (onetime occlusive patch test, repeated occlusive test, or repeated open tests). The model of choice depends on the presumed circumstances under which these compounds are met with in daily life.

Great interindividual variations in susceptibility to irritants are recognized among healthy nonatopic subjects. The role of barrier function, adaptation capacity, and other factors that may determine susceptibility is discussed.

Atopic dermatitis is unique in its high reactivity. New findings point toward the role of filaggrins in a subgroup of atopic dermatitis patients. Furthermore, characteristic stratum corneum lipid patterns have been identified.

Prospective studies have identified history of hand dermatitis and atopic dermatitis as important personal risk factors for the development of hand dermatitis in high-risk occupations.


Atopic dermatitis Corneometer Laser Doppler flowmetry Natural moisturizing factor (NMF) Profilaggrin Soap effect Spectrophotometry T-helper-2 polarization Visual scoring 


  1. Agner T (1991) Skin susceptibility in uninvolved skin of hand eczema patients and healthy controls. Br J Dermatol 125:140–146CrossRefGoogle Scholar
  2. Agner T, Serup J (1990) Sodium lauryl sulphate for irritant patch testing – a dose–response study using bioengineering methods for determination of skin irritation. J Invest Dermatol 95:543–547CrossRefGoogle Scholar
  3. Allen MH, Wakelin SH, Holloway D et al (2000) Association of TNFA gene polymorphism at position −308 with susceptibility to irritant contact dermatitis. Immunogenetics 51:201–205CrossRefGoogle Scholar
  4. Andersen KE (1996) Reproducibility of the chamber scarification test. Contact Dermatitis 34:181–184CrossRefGoogle Scholar
  5. Andersen F, Hedegaard K, Petersen TK et al (2006) Anti-irritants II: efficacy against cumulative irritation. Contact Dermatitis 55:155–159CrossRefGoogle Scholar
  6. Aramaki J, Effendy I, Happle R et al (2001a) Which bioengineering assay is appropriate for irritant patch testing with sodium lauryl sulfate? Contact Dermatitis 45:286–290CrossRefGoogle Scholar
  7. Aramaki J, Löffler C, Kawana S et al (2001b) Irritant patch testing with sodium lauryl sulfate: interrelation between concentration and exposure time. Br J Dermatol 145:704–708CrossRefGoogle Scholar
  8. Basketter DA, Griffiths HA, Wang XM et al (1996) Individual, ethnic and seasonal variability in irritant susceptibility of skin: the implications for a predictive human patch test. Contact Dermatitis 35:208–213CrossRefGoogle Scholar
  9. Berardesca E (1997) EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol 3:126–132CrossRefGoogle Scholar
  10. Berardesca E, Maibach HI (1988) Racial differences in sodium lauryl sulfate induced skin irritation: black and white. Contact Dermatitis 18:65–70CrossRefGoogle Scholar
  11. Berndt U, Hinnen U, Iliev D et al (1999a) Role of the atopy score and of single atopic features as risk factors for the development of hand eczema in trainee metal workers. Br J Dermatol 140:922–924CrossRefGoogle Scholar
  12. Berndt U, Hinnen U, Iliev D et al (1999b) Is occupational irritant contact dermatitis predictable by cutaneous bioengineering methods? Results of the Swiss metalworkers’ eczema study (PROMETES). Dermatology 198:351–354CrossRefGoogle Scholar
  13. Berndt U, Hinnen U, Iliev D et al (2000) Hand eczema in metalworker trainees – an analysis of risk factors. Contact Dermatitis 43:327–332CrossRefGoogle Scholar
  14. Bircher A, de Boer EM, Agner T et al (1994) Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry. Contact Dermatitis 30:65–72CrossRefGoogle Scholar
  15. Björnberg A (1968) Skin reactions to primary irritants in patients with hand eczema. Thesis, Oscar Isacsons Tryckeri AB, GothenburgGoogle Scholar
  16. Blank JH, Gould J (1961) Penetration of anionic surfactants into skin. III. Penetration from buffered sodium laurate solutions. J Invest Dermatol 37:485–488CrossRefGoogle Scholar
  17. Coenraads PJ, Pinnagoda J (1985) Dermatitis and water vapour loss in metal workers. Contact Dermatitis 13:347–348CrossRefGoogle Scholar
  18. De Jongh CM, Verberk MM, Witthagen CE et al (2006) Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. Contact Dermatitis 54:325–333CrossRefGoogle Scholar
  19. De Jongh CM, Khrenova L, Verberk MM et al (2008) Loss-of-function polymorphisms in the filaggrin gene are associated with an increased susceptibility to chronic irritant contact dermatitis: a case–control study. Br J Dermatol 159:621–627CrossRefGoogle Scholar
  20. Diepgen TL (1991) Die atopische Hautdiathese. Epidemiologie, Klinik und berufsdermatologische Bedeutung. Gentner, StuttgartGoogle Scholar
  21. Effendy I, Loeffler H, Maibach HI (1995) Baseline transepidermal water loss in patients with acute and healed irritant contact dermatitis. Contact Dermatitis 33:371–374CrossRefGoogle Scholar
  22. Elias PM, Wood LC, Feingold KR (1999) Epidermal pathogenesis of inflammatory dermatoses. Am J Contact Dermatitis 10:119–126PubMedGoogle Scholar
  23. Fluhr JW, Kuss O, Diepgen T (2001) Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol 145:696–703CrossRefGoogle Scholar
  24. Freeman S, Maibach HI (1988) Study of irritant contact dermatitis produced by repeat patch test with sodium lauryl sulfate and assessed by visual methods, transepidermal water loss, and laser Doppler velocimetry. J Am Acad Dermatol 19:496–502CrossRefGoogle Scholar
  25. Frosch PJ (1982) Irritancy of soaps and detergent bars. In: Frost P, Horwitz SN (eds) Principles of cosmetics for the dermatologist. CV Mosby, St. LouisGoogle Scholar
  26. Frosch PJ, Kligman AM (1979) The soap chamber test. J Am Acad Dermatol 1:35–41CrossRefGoogle Scholar
  27. Frosch PJ, Kurte A, Pilz B (1993) Efficacy of skin barrier creams (III). The repetitive irritation test (RIT) in humans. Contact Dermatitis 29:113–118CrossRefGoogle Scholar
  28. Fullerton A, Fischer T, Lahti A et al (1996) Guidelines for measurement of skin colour and erythema. Contact Dermatitis 35:1–10CrossRefGoogle Scholar
  29. Fullerton A, Stücker M, Wilhelm K-P et al (2002) Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. Contact Dermatitis 46:129–140CrossRefGoogle Scholar
  30. Funke U, Fartasch M, Diepgen TL (2001) Incidence of work-related hand eczema during apprenticeship: first results of a prospective cohort study in the car industry. Contact Dermatitis 44:166–172CrossRefGoogle Scholar
  31. Gehring W, Gloor M, Kleesz P (1998) Predictive washing test for evaluation of individual eczema risk. Contact Dermatitis 39:8–13CrossRefGoogle Scholar
  32. Gloor M, Völlm P, Gehse M et al (1985) Irritationseffekt von Tensiden bei Patienten mit Gewerbeekzemen im Friseur-und Krankenpflegeberuf. Dermatosen 33:86–89Google Scholar
  33. Goh CL, Gan SL (1994) Efficacies of barrier creams and afterwork emollient cream against cutting fluid dermatitis in metal workers: a prospective study. Contact Dermatitis 31:176–181CrossRefGoogle Scholar
  34. Hagerman G (1957) Ueber das “traumiterative” (toxische) Ekzem. Dermatologica 115:525–529CrossRefGoogle Scholar
  35. Hanifin JM, Rajka G (1980) Diagnostic features of atopic dermatitis. Acta Derm Venereol (Stockh) 92:44–47Google Scholar
  36. Heinemann C, Paschold C, Fluhr J et al (2005) Induction of a hardening phenomenon by repeated application of SLS: analysis of lipid changes in the SC. Acta Derm Venereol 85:290–295CrossRefGoogle Scholar
  37. Howell MD, Kin BE, Gao P et al (2007) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 120:150–155CrossRefGoogle Scholar
  38. Hubiche T, Ged C, Benard A et al (2007) Analysis of SPINK 5, KLK 7 and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol 87:499–505CrossRefGoogle Scholar
  39. Imokawa G, Mishima Y (1979) Cumulative effect of surfactants on cutaneous horny layers: adsorption onto human keratin layers in vivo. Contact Dermatitis 5:357–366CrossRefGoogle Scholar
  40. Imokawa G, Abe A, Jin K et al (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 96:523–526CrossRefGoogle Scholar
  41. John SM, Uter W, Schwanitz HJ (2000) Relevance of multiparametric skin bioengineering in a prospectively-followed cohort of junior hairdressers. Contact Dermatitis 43:161–168CrossRefGoogle Scholar
  42. Jungerstedt JM, Scheer H, Mempel H et al (2010) Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 65(7):911–918CrossRefGoogle Scholar
  43. Kezic S, Kemperman PMJH, Koster ES et al (2008) Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factr in the stratum corneum. J Invest Dermatol 128:2117–2119CrossRefGoogle Scholar
  44. Klein G, Grubauer G, Fritsch P (1992) The influence of daily dish-washing with synthetic detergent on human skin. Br J Dermatol 127:131–137CrossRefGoogle Scholar
  45. Kligman AM, Wooding WM (1967) A method for the measurement and evaluation of irritants on human skin. J Invest Dermatol 49:78–94CrossRefGoogle Scholar
  46. Lammintausta K, Kalimo K (1981) Atopy and hand dermatitis in hospital work. Contact Dermatitis 7:301–308CrossRefGoogle Scholar
  47. Löffler H, Pirker C, Aramaki J et al (2001) Evaluation of skin susceptibility to irritancy by routine patch testing with sodium lauryl sulfate. Eur J Dermatol 11:416–419PubMedGoogle Scholar
  48. Löffler H, Kampf G, Schmermund D et al (2007) How irritant is alcohol? Br J Dermatol 157:74–81CrossRefGoogle Scholar
  49. Mathias CGT (1983) In: Marzulli FN, Maibach HI (eds) Clinical and experimental aspects of cutaneous irritation. Dermatotoxicology. Hemisphere Publishing, WashingtonGoogle Scholar
  50. McOsker DE, Beck LW (1967) Characteristics of accommodated (hardened) skin. J Invest Dermatol 48:372–383CrossRefGoogle Scholar
  51. Meding B, Wrangsjö K, Järvholm B (2005) Fifteen-year follow-up of hand eczema: persistence and consequences. Br J Dermatol 152:975–980CrossRefGoogle Scholar
  52. Nassif A, Chan SC, Storrs FJ et al (1994) Abnormal skin irritancy in atopic dermatitis and in atopy without dermatitis. Arch Dermatol 130:1402–1407CrossRefGoogle Scholar
  53. Nemoto-Hasebe I, Akiyama M, Nomura T et al (2009) Clinical severity correlates with impaired barrier in filaggrin-related eczema. J Invest Dermatol 129:682–689CrossRefGoogle Scholar
  54. Nilsson GE (1977) On the measurement of evaporative water loss. Methods and clinical applications. Thesis, Linkoping University Medical Dissertations, No. 48, LinkopingGoogle Scholar
  55. Nilsson E, Bäck O (1986) The importance of anamnestic information of atopy, metal dermatitis and earlier hand eczema for the development of hand dermatitis in women in wet hospital work. Acta Derm Venereol (Stockh) 66:45–50Google Scholar
  56. O’Regan GM, Sandilands A, McLean WH et al (2008) Filaggrin in atopic dermatitis. J Allergy Clin Immunol 122:689–693CrossRefGoogle Scholar
  57. Phillips L, Steinberg M, Maibach HI et al (1972) A comparison of rabbit and human skin responses to certain irritants. Toxicol Appl Pharmacol 21:369–382CrossRefGoogle Scholar
  58. Pinnagoda J, Tupker RA, Coenraads PJ et al (1989) Prediction of susceptibility to an irritant response by transepidermal water loss. Contact Dermatitis 20:341–346CrossRefGoogle Scholar
  59. Pinnagoda J, Tupker RA, Agner T et al (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the standardization group of the European environmental and contact dermatitis society. Contact Dermatitis 22:164–178CrossRefGoogle Scholar
  60. Rothman S (1954) Insensible water loss. In: Physiology and biochemistry of the skin. University of Chicago Press, ChicagoGoogle Scholar
  61. Schmid K, Broding HC, Uter W et al (2005) Transepidermal water loss and incidence of hand dermatitis in a prospectively followed cohort of apprentice nurses. Contact Dermatitis 52:247–253CrossRefGoogle Scholar
  62. Shahidullah M, Raffle EJ, Rimmer AR et al (1969) Transepidermal water loss in patients with dermatitis. Br J Dermatol 81:722–730CrossRefGoogle Scholar
  63. Smeenk G (1969) The influence of detergents on the skin (a clinical and biochemical study). Arch Klin Exp Dermatol 235:180–191CrossRefGoogle Scholar
  64. Smit HA, van Rijssen A, Vandenbroucke JP et al (1994) Individual susceptibility and the incidence of hand dermatitis in a cohort of hairdressers and nurses. Scan J Work Environ Health 20:113–121CrossRefGoogle Scholar
  65. Smith HR, Armstrong DK, Holloway D et al (2002) Skin irritation thresholds in hairdressers: implications for the development of hand dermatitis. Br J Dermatol 146:849–852CrossRefGoogle Scholar
  66. Thyssen JP, Carlsen BC, Menné T et al (2010) Filaggrin null mutations increase the risk and persistence of hand eczema in subjects with atopic dermatitis: results from a general population study. Br J Dermatol 163:115–120PubMedGoogle Scholar
  67. Treffel P, Muret P, Muret-D’Aniello P, Coumes-Marquet S, Agache P et al (1992) Effect of occlusion on in vitro percutaneous absorption of two compounds with different physicochemical properties. Skin Pharmacol 5:108–113CrossRefGoogle Scholar
  68. Tupker RA, Pinnagoda J, Coenraads PJ et al (1989a) The influence of repeated exposure to surfactants on the human skin as determined by transepidermal water loss and visual scoring. Contact Dermatitis 20:108–114CrossRefGoogle Scholar
  69. Tupker RA, Coenraads PJ, Pinnagoda J et al (1989b) Baseline transepidermal water loss (TEWL) as a prediction of susceptibility to sodium lauryl sulfate. Contact Dermatitis 20:265–269CrossRefGoogle Scholar
  70. Tupker RA, Pinnagoda J, Coenraads PJ et al (1990a) Susceptibility to irritants: role of barrier function, skin dryness and history of atopic dermatitis. Br J Dermatol 123:199–205CrossRefGoogle Scholar
  71. Tupker RA, Pinnagoda J, Nater JP (1990b) The transient and cumulative effect of sodium lauryl sulfate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm Venereol (Stockh) 70:1–5Google Scholar
  72. Tupker RA, Coenraads PJ, Fidler V et al (1995) Irritant susceptibility and wheal and flare reactions to bio-active agents in atopic dermatitis: I. Influence of disease severity. Br J Dermatol 133:358–364CrossRefGoogle Scholar
  73. Tupker RA, Willis C, Berardesca E et al (1997a) Guidelines on sodium lauryl sulfate (SLS) exposure tests. A report from the standardization group of the European Society of Contact Dermatitis. Contact Dermatitis 37:53–69CrossRefGoogle Scholar
  74. Tupker RA, Schuur J, Coenraads PJ (1997b) Irritancy of antiseptics tested by repeated open exposures on the human skin, evaluated by non-invasive methods. Contact Dermatitis 37:213–217CrossRefGoogle Scholar
  75. Tupker RA, Vermeulen K, Fidler V et al (1997c) Irritancy of sodium laurate and other anionic detergents using an open exposure model. Skin Res Technol 3:133–136CrossRefGoogle Scholar
  76. Tupker RA, Bunte EE, Fidler V et al (1999) Irritancy ranking of anionic detergents using one-time occlusive, repeated occlusive and repeated open tests. Contact Dermatitis 40:316–322CrossRefGoogle Scholar
  77. Van der Valk PGM, Maibach HI (1989) Post-application occlusion substantially increases the irritant response to the skin to repeated short-term sodium lauryl sulfate (SLS) exposure. Contact Dermatitis 21:335–338CrossRefGoogle Scholar
  78. Van der Valk PGM, Nater JP, Bleumink E (1985) Vulnerability of the skin to surfactants in different groups of eczema patients and controls as measured by water vapour loss. Clin Exp Dermatol 10:98–103CrossRefGoogle Scholar
  79. Willis CM (2002) Variability in responsiveness to irritants: thought on possible underlying mechanisms. Contact Dermatitis 47:267–271CrossRefGoogle Scholar
  80. Yosipovitch G, Sackett-Lundeen L, Goon A et al (2004) Circadian and ultradian (12 h) variations of skin blood flow and barrier function in non-irritated and irritated skin – effect of topic corticosteroids. J Invest Dermatol 122:824–829CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologySt Antonius HospitalNieuwegeinThe Netherlands

Personalised recommendations