Advertisement

Immunology and Barrier Function of the Skin

  • Thomas RustemeyerEmail author
  • Manigé Fartasch
Living reference work entry

Abstract

A disturbed epidermal barrier may lead to irritant contact dermatitis.

An enhanced penetration through skin barrier may facilitate sensitization.

Immunological effects induced by pre-irritation and barrier alteration may further lead to the induction of allergic Type IV-contact dermatitis and Type I (immediate-type reaction) reactions or aggravate allergic reactions.

Keywords

Atopic eczema (AE) Cornified cell envelope Epidermal permeability barrier Filaggrin Keratohyalin Netherton’s syndrome (NS) Transepidermal water loss (TEWL) 

References

  1. Agner T, Johansen JD, Overgaard L et al (2002) Combined effects of irritants and allergens. Synergistic effects of nickel and sodium lauryl sulfate in nickel- sensitized individuals. Contact Dermatitis 47:21–26CrossRefGoogle Scholar
  2. Basketter DA, Kan-King-Yu D, Dierkes P et al (2007) Does irritation potency contribute to the skin sensitization potency of contact allergens? Cutan Ocul Toxicol 26:279–286CrossRefGoogle Scholar
  3. Bauer J, Bahmer FA, Worl J et al (2001) A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. J Invest Dermatol 116:313–318CrossRefGoogle Scholar
  4. Blomeke B, Brans R, Dickel H et al (2008) Association between TNFA-308 G/A polymorphism and sensitization to para-phenylenediamine: a case-control study. Allergy 64(2):279–283CrossRefGoogle Scholar
  5. Bonneville M, Chavagnac C, Vocanson M et al (2007) Skin contact irritation conditions the development and severity of allergic contact dermatitis. J Invest Dermatol 127:1430–1435CrossRefGoogle Scholar
  6. Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758:2080–2095CrossRefGoogle Scholar
  7. Brasch J, Burgard J, Sterry W (1992) Common pathogenetic pathways in allergic and irritant contact dermatitis. J Invest Dermatol 98:166–170CrossRefGoogle Scholar
  8. Callard RE, Harper JI (2007) The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol 28:294–298CrossRefGoogle Scholar
  9. Chavanas S, Bodemer C, Rochat A et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142CrossRefGoogle Scholar
  10. de Jongh CM, Jakasa I, Verberk MM et al (2006) Variation in barrier impairment and inflammation of human skin as determined by sodium lauryl sulphate penetration rate. Br J Dermatol 154:651–657CrossRefGoogle Scholar
  11. de Jongh CM, Lutter R, Verberk MM et al (2007) Differential cytokine expression in skin after single and repeated irritation by sodium lauryl sulphate. Exp Dermatol 16:1032–1040CrossRefGoogle Scholar
  12. de Jongh CM, John SM, Bruynzeel DP et al (2008a) Cytokine gene polymorphisms and susceptibility to chronic irritant contact dermatitis. Contact Dermatitis 58:269–277CrossRefGoogle Scholar
  13. de Jongh CM, Khrenova L, Kezic S et al (2008b) Polymorphisms in the interleukin-1 gene influence the stratum corneum interleukin-1 alpha concentration in uninvolved skin of patients with chronic irritant contact dermatitis. Contact Dermatitis 58:263–268CrossRefGoogle Scholar
  14. Elias PM, Feingold KR (2006) Permeability barrier homeostasis. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor and Francis, New York/LondonGoogle Scholar
  15. Fartasch M (1997) Epidermal barrier in disorders of the skin. Microsc Res Tech 38:361–372CrossRefGoogle Scholar
  16. Fartasch M (2004) The epidermal lamellar body: a fascinating secretory organelle. J Invest Dermatol 122:XI–XIICrossRefGoogle Scholar
  17. Fartasch M (2005) Atopic dermatitis and other skin diseases. In: Fluhr J, Elsner P, Berardesca E, Maibach F (eds) Bioengineering of the skin: water and stratum corneum, 2nd edn. CRC Press, Boca Raton, pp 160–169Google Scholar
  18. Fartasch M, Schnetz E, Diepgen TL (1998) Characterization of detergent-induced barrier alterations – effect of barrier cream on irritation. J Investig Dermatol Symp Proc 3:121–127CrossRefGoogle Scholar
  19. Fartasch M, Williams ML, Elias PM (1999) Altered lamellar body secretion and stratum corneum membrane structure in Netherton syndrome: differentiation from other infantile erythrodermas and pathogenic implications. Arch Dermatol 135:823–832CrossRefGoogle Scholar
  20. Friedmann PS (2006) Contact sensitisation and allergic contact dermatitis: immunobiological mechanisms. Toxicol Lett 162:49–54CrossRefGoogle Scholar
  21. Friedmann PS (2007) The relationships between exposure dose and response in induction and elicitation of contact hypersensitivity in humans. Br J Dermatol 157:1093–1102CrossRefGoogle Scholar
  22. Friedmann PS, Moss C, Shuster S et al (1983) Quantitative relationships between sensitizing dose of DNCB and reactivity in normal subjects. Clin Exp Immunol 53:709–715PubMedPubMedCentralGoogle Scholar
  23. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255CrossRefGoogle Scholar
  24. Grabbe S, Steinert M, Mahnke K et al (1996) Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects of haptens determine the concentration-dependent elicitation of allergic contact dermatitis. J Clin Invest 98:1158–1164CrossRefGoogle Scholar
  25. Hoath S (2001) The skin as a neurodevelopmental interface. Neo Rev 2:269–281Google Scholar
  26. Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38:399–400CrossRefGoogle Scholar
  27. Incorvaia C, Frati F, Verna N et al (2008) Allergy and the skin. Clin Exp Immunol 153(1):27–29CrossRefGoogle Scholar
  28. Jacobs JJ, Lehe CL, Cammans KD et al (2004) Assessment of contact allergens by dissociation of irritant and sensitizing properties. Toxicol In Vitro 18:681–690CrossRefGoogle Scholar
  29. Jacobs JJ, Lehe CL, Hasegawa H, Das PK et al (2006) Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration. Exp Dermatol 15:432–440CrossRefGoogle Scholar
  30. Jakasa I, de Jongh CM, Verberk MM et al (2006) Percutaneous penetration of sodium lauryl sulphate is increased in uninvolved skin of patients with atopic dermatitis compared with control subjects. Br J Dermatol 155:104–109CrossRefGoogle Scholar
  31. Jensen JM, Folster-Holst R, Baranowsky A et al (2004) Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 122:1423–1431CrossRefGoogle Scholar
  32. Johansen JD, Skov L, Volund A et al (1998) Allergens in combination have a synergistic effect on the elicitation response: a study of fragrance-sensitized individuals. Br J Dermatol 139:264–270CrossRefGoogle Scholar
  33. Judge MR, Griffiths HA, Basketter DA et al (1996) Variation in response of human skin to irritant challenge. Contact Dermatitis 34:115–117CrossRefGoogle Scholar
  34. Kezic S (2008) Methods for measuring in-vivo percutaneous absorption in humans. Hum Exp Toxicol 27:289–295CrossRefGoogle Scholar
  35. Kimber I, Dearman RJ, Gerberick GF et al (2003) Designation of substances as skin sensitizing chemicals: a commentary. Hum Exp Toxicol 22:439–443PubMedGoogle Scholar
  36. McFadden JP, Basketter DA (2000) Contact allergy, irritancy and “danger”. Contact Dermatitis 42:123–127CrossRefGoogle Scholar
  37. McLelland J, Shuster S, Matthews JN (1991) “Irritants” increase the response to an allergen in allergic contact dermatitis. Arch Dermatol 127:1016–1019CrossRefGoogle Scholar
  38. Menon GK (2003) Caveolins in epidermal lamellar bodies: skin is an interactive interface, not an inflexible barrier. J Invest Dermatol 120:XV–XVICrossRefGoogle Scholar
  39. Menon G, Fartasch M (2010) Structural and functional correlations of skin barrier in health and disease: models and evaluation. In: Monteiro-Riviere NA (ed) Toxicology of the skin: targets organ series. Informa Healthcare, New YorkGoogle Scholar
  40. Nickoloff BJ, Naidu Y (1994) Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol 30:535–546CrossRefGoogle Scholar
  41. Nishijima T, Tokura Y, Imokawa G et al (1997) Altered permeability and disordered cutaneous immunoregulatory function in mice with acute barrier disruption. J Invest Dermatol 109:175–182CrossRefGoogle Scholar
  42. Novak N, Baurecht H, Schafer T et al (2008) Loss-of-function mutations in the filaggrin gene and allergic contact sensitization to nickel. J Invest Dermatol 128:1430–1435CrossRefGoogle Scholar
  43. O’Reagan GM, Irvine AD (2008) The role of filaggrin loss-of-function mutations in atopic dermatitis. Curr Opin Allergy Clin Immunol 8(5):406–410CrossRefGoogle Scholar
  44. Palmer CN, Irvine AD, Terron-Kwiatkowski A et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446CrossRefGoogle Scholar
  45. Pedersen LK, Johansen JD, Held E (2004) Augmentation of skin response by exposure to a combination of allergens and irritants – a review. Contact Dermatitis 50:265–273CrossRefGoogle Scholar
  46. Proksch E, Brasch J (1997) Influence of epidermal permeability barrier disruption and Langerhans’ cell density on allergic contact dermatitis. Acta Derm Venereol 77:102–104PubMedGoogle Scholar
  47. Proksch E, Elias PM, Feingold KR (1990) Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements. J Clin Invest 85:874–882CrossRefGoogle Scholar
  48. Saint-Mezard P, Rosieres A, Krasteva M et al (2004) Allergic contact dermatitis. Eur J Dermatol 14:284–295PubMedGoogle Scholar
  49. Tsai JC, Feingold KR, Crumrine D et al (1994) Permeability barrier disruption alters the localization and expression of TNF alpha/protein in the epidermis. Arch Dermatol Res 286:242–248CrossRefGoogle Scholar
  50. Uter W, Schnuch A, Geier J et al (1998) Epidemiology of contact dermatitis. The information network of departments of dermatology (IVDK) in Germany. Eur J Dermatol 8:36–40PubMedGoogle Scholar
  51. von den Driesch P, Fartasch M, Huner A et al (1995) Expression of integrin receptors and ICAM-1 on keratinocytes in vivo and in an in vitro reconstructed epidermis: effect of sodium dodecyl sulphate. Arch Dermatol Res 287:249–253CrossRefGoogle Scholar
  52. Warner RR, Bush RD, Ruebusch NA (1995) Corneocytes undergo systematic changes in element concentrations across the human inner stratum corneum. J Invest Dermatol 104:530–536CrossRefGoogle Scholar
  53. Westphal GA, Schnuch A, Moessner R et al (2003) Cytokine gene polymorphisms in allergic contact dermatitis. Contact Dermatitis 48:93–98CrossRefGoogle Scholar
  54. Willis CM, Shaw S, De Lacharrière O et al (2001) Sensitive skin: an epidemiological study. Br J Dermatol 145(2):258–263CrossRefGoogle Scholar
  55. Wilmer JL, Burleson FG, Kayama F et al (1994) Cytokine induction in human epidermal-keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin. J Invest Dermatol 102:915–922CrossRefGoogle Scholar
  56. Wood LC, Jackson SM, Elias PM et al (1992) Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest 90:482–487CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Dermatology/AllergologyVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department for Clinical and Experimental Occupational DermatologyInstitute for Prevention and Occupational Medicine of the German Social Accident Insurance/Institute of the Ruhr-UniversityBochumGermany

Personalised recommendations