Skip to main content

Effects of Biotin Deprivation and Biotin Supplementation

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

A number of key carboxylase enzymes involved in metabolism depend upon the vitamin biotin for their structure and function. Humans and animals require biotin to be supplied in the diet. Biotin deficiency is relatively rare in the developed world and typically reflects consumption of egg white-enriched or ketogenic diets, whereas deficiency in underdeveloped countries is more likely to be due to biotin-poor diets. The effects of biotin deficiency are not typically life-threatening, but can lead to developmental delays in children, or hair and skin abnormalities in affected individuals. In contrast, biotin supplementation has been shown to provide salutary benefit in some individuals, such as diabetics. Here we examine the biochemistry of biotin, as well as the effects of biotin deficiency and supplementation, with a focus on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACC:

Acetyl-CoA carboxylase

ATP:

Adenosine triphosphate

HCS:

Holocarboxylase synthetase

MCC:

β-methylcrotonyl-CoA carboxylase

MCD:

Multiple carboxylase deficiency

PAP:

Pancreatitis-associated protein

PC:

Pyruvate carboxylase

PCC:

Propionyl-CoA carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

SMVT:

Sodium-dependent multivitamin transporter

References

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA et al (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    Article  CAS  PubMed  Google Scholar 

  • Albarracin CA, Fuqua BC, Evans JL et al (2008) Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab Res Rev 24:41–51

    Article  CAS  PubMed  Google Scholar 

  • Atamna H, Newberry J, Erlitzki R et al (2007) Biotin deficiency inhibits heme synthesis and impairs mitochondria in human lung fibroblasts. J Nutr 137:25–30

    CAS  PubMed  Google Scholar 

  • Baez-Saldana A, Camacho-Arroyo I, Espinosa-Aguirre JJ et al (2009) Biotin deficiency and biotin excess: effects on the female reproductive system. Steroids 74:863–869

    Article  CAS  PubMed  Google Scholar 

  • Bowers-Komro DM, Mccormick DB (1985) Biotin uptake by isolated rat liver hepatocytes. Ann N Y Acad Sci 447:350–358

    Article  CAS  PubMed  Google Scholar 

  • Chalifour LE, Dakshinamurti K (1982) The biotin requirement of human fibroblasts in culture. Biochem Biophys Res Commun 104:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Chauhan J, Dakshinamurti K (1986) Purification and characterization of human serum biotinidase. J Biol Chem 261:4268–4275

    CAS  PubMed  Google Scholar 

  • Chauhan J, Dakshinamurti K (1988) Role of human serum biotinidase as biotin-binding protein. Biochem J 256:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan J, Dakshinamurti K (1991) Transcriptional regulation of the glucokinase gene by biotin in starved rats. J Biol Chem 266:10035–10038

    CAS  PubMed  Google Scholar 

  • Christeller JT, Markwick NP, Burgess EP et al (2010) The use of biotin-binding proteins for insect control. J Econ Entomol 103:497–508

    Article  CAS  PubMed  Google Scholar 

  • Closa D, Motoo Y, Iovanna JL (2007) Pancreatitis-associated protein: from a lectin to an anti-inflammatory cytokine. World J Gastroenterol 13:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakshinamurti K (2005) Biotin – a regulator of gene expression. J Nutr Biochem 16:419–423

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Allan L (1979) Isotope dilution assay for biotin: use of [3H]biotin. Methods Enzymol 62:284–287

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Chalifour LE (1981) The biotin requirement of HeLa cells. J Cell Physiol 107:427–438

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Chauhan J (1988) Regulation of biotin enzymes. Annu Rev Nutr 8:211–233

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Chauhan J (1989) Biotin. Vitam Horm 45:337–384

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Chauhan J (1990) Nonavidin biotin-binding proteins. Methods Enzymol 184:93–102

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Cheah-Tan C (1968a) Biotin-mediated synthesis of hepatic glucokinase in the rat. Arch Biochem Biophys 127:17–21

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Cheah-Tan C (1968b) Liver glucokinase of the biotin deficient rat. Can J Biochem 46:75–80

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Ho Chong H (1970) Regulation of key hepatic glycolytic enzymes. Enzymol Biol Clin (Basel) 11:423–428

    Article  CAS  Google Scholar 

  • Dakshinamurti K, Li W (1994) Transcriptional regulation of liver phosphoenolpyruvate carboxykinase by biotin in diabetic rats. Mol Cell Biochem 132:127–132

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Mistry SP (1963a) Amino acid incorporation and biotin deficiency. J Biol Chem 238:297–301

    CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Mistry SP (1963b) Tissue and intracellular distribution of biotin-C-1400H in rats and chicks. J Biol Chem 238:294–296

    CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Rector ES (1990) Monoclonal antibody to biotin. Methods Enzymol 184:111–119

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Sabir MA, Bhuvaneswaran C (1970) Oxidative phosphorylation by biotin-deficient rat liver mitochondria. Arch Biochem Biophys 137:30–37

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Landman AD, Ramamurti L et al (1974) Isotope dilution assay for biotin. Anal Biochem 61:225–231

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Bhullar RP, Scoot A et al (1986) Production and characterization of a monoclonal antibody to biotin. Biochem J 237:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakshinamurti K, Chauhan J, Ebrahim H (1987) Intestinal absorption of biotin and biocytin in the rat. Biosci Rep 7:667–673

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Bagchi RA, Abrenica B et al (2015) Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats. Can J Physiol Pharmacol 93:1103–1110

    Article  CAS  PubMed  Google Scholar 

  • De La Vega LA, Stockert RJ (2000) Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol Cell Physiol 279:C2037–C2042

    Google Scholar 

  • Dundas CM, Demonte D, Park S (2013) Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 97:9343–9353

    Article  CAS  PubMed  Google Scholar 

  • Dusetti NJ, Tomasini R, Azizi A et al (2000) Expression profiling in pancreas during the acute phase of pancreatitis using cDNA microarrays. Biochem Biophys Res Commun 277:660–667

    Article  CAS  PubMed  Google Scholar 

  • Gravel RA, Narang MA (2005) Molecular genetics of biotin metabolism: old vitamin, new science. J Nutr Biochem 16:428–431

    Article  CAS  PubMed  Google Scholar 

  • Kuroishi T (2015) Regulation of immunological and inflammatory functions by biotin. Can J Physiol Pharmacol 93:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Larrieta E, Vega-Monroy ML, Vital P et al (2012) Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nutr Biochem 23:392–399

    Article  CAS  PubMed  Google Scholar 

  • Lazo De La Vega-Monroy ML, Larrieta E, German MS et al (2013) Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportion. J Nutr Biochem 24:169–177

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Cronan JE (2011) Closing in on complete pathways of biotin biosynthesis. Mol BioSyst 7:1811–1821

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Ploux O (2011) Pyridoxal-5′-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition. Biochim Biophys Acta 1814:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Mock DM, Dyken ME (1997) Biotin catabolism is accelerated in adults receiving long-term therapy with anticonvulsants. Neurology 49:1444–1447

    Article  CAS  PubMed  Google Scholar 

  • Narang MA, Dumas R, Ayer LM et al (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum Mol Genet 13:15–23

    Article  CAS  PubMed  Google Scholar 

  • Oh W, Abu-Elheiga L, Kordari P et al (2005) Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci U S A 102:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Cuellar D, Hernandez-Mendoza A, Moreno-Arriola E et al (2010) Biotin starvation with adequate glucose provision causes paradoxical changes in fuel metabolism gene expression similar in rat (Rattus norvegicus), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae). J Nutrigenet Nutrigenomics 3:18–30

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Alvarez D, Solorzano-Vargas RS, Gravel RA et al (2004) Paradoxical regulation of biotin utilization in brain and liver and implications for inherited multiple carboxylase deficiency. J Biol Chem 279:52312–52318

    Article  CAS  PubMed  Google Scholar 

  • Paulose CS, Thliveris JA, Viswanathan M et al (1989) Testicular function in biotin-deficient adult rats. Horm Metab Res 21:661–665

    Article  CAS  PubMed  Google Scholar 

  • Romero-Navarro G, Cabrera-Valladares G, German MS et al (1999) Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology 140:4595–4600

    Article  CAS  PubMed  Google Scholar 

  • Roth KS (1985) Prenatal treatment of multiple carboxylase deficiency. Ann NY Acad Sci 447:263–271

    Article  CAS  PubMed  Google Scholar 

  • Roth KS, Yang W, Allan L et al (1982) Prenatal administration of biotin in biotin responsive multiple carboxylase deficiency. Pediatr Res 16:126–129

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Wakabayashi K, Ogawa E et al (2016) Low serum biotin in Japanese children fed with hydrolysate formula. Pediatr Int 58:867–871

    Article  CAS  PubMed  Google Scholar 

  • Singer GM, Geohas J (2006) The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther 8:636–643

    Article  CAS  PubMed  Google Scholar 

  • Singh IN, Dakshinamurti K (1988) Stimulation of guanylate cyclase and RNA polymerase II activities in HeLa cells and fibroblasts by biotin. Mol Cell Biochem 79:47–55

    Article  CAS  PubMed  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

    Article  CAS  PubMed  Google Scholar 

  • Spence JT, Koudelka AP (1984) Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. J Biol Chem 259:6393–6396

    CAS  PubMed  Google Scholar 

  • Stanley JS, Griffin JB, Zempleni J (2001) Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268:5424–5429

    Article  CAS  PubMed  Google Scholar 

  • Stratton SL, Horvath TD, Bogusiewicz A et al (2011) Urinary excretion of 3-hydroxyisovaleryl carnitine is an early and sensitive indicator of marginal biotin deficiency in humans. J Nutr 141:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita Y, Shirakawa H, Sugimoto R et al (2008) Effect of biotin treatment on hepatic gene expression in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 72:1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Sweetman L, Nyhan WL (1986) Inheritable biotin-treatable disorders and associated phenomena. Annu Rev Nutr 6:317–343

    Article  CAS  PubMed  Google Scholar 

  • Takakura Y, Oka N, Suzuki J et al (2012) Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice. Mol Biotechnol 51:9–17

    Article  CAS  PubMed  Google Scholar 

  • Terouanne B, Bencheick M, Balaguer P et al (1989) Bioluminescent assays using glucose-6-phosphate dehydrogenase: application to biotin and streptavidin detection. Anal Biochem 180:43–49

    Article  CAS  PubMed  Google Scholar 

  • Thuy LP, Sweetman L, Nyhan WL (1991) A new immunochemical assay for biotin. Clin Chim Acta 202:191–197

    Article  CAS  PubMed  Google Scholar 

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  CAS  PubMed  Google Scholar 

  • Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863–891

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Harwood HJ Jr (2006) Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem 99:1476–1488

    Article  CAS  PubMed  Google Scholar 

  • Vasseur S, Folch-Puy E, Hlouschek V et al (2004) p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. J Biol Chem 279:7199–7207

    Article  CAS  PubMed  Google Scholar 

  • Velazquez-Arellano A, Hernandez-Esquivel Mde L, Sanchez RM et al (2008) Functional and metabolic implications of biotin deficiency for the rat heart. Mol Genet Metab 95:213–219

    Article  CAS  PubMed  Google Scholar 

  • Velazquez-Arellano A, Ortega-Cuellar D, Hernandez-Mendoza A et al (2011) A heuristic model for paradoxical effects of biotin starvation on carbon metabolism genes in the presence of abundant glucose. Mol Genet Metab 102:69–77

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Kodama H, Ogawa E et al (2016) Serum biotin in Japanese children: enzyme-linked immunosorbent assay measurement. Pediatr Int 58:872–876

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Dakshinamurti K, Persaud TV (1995) Biotin influences palatal development of mouse embryos in organ culture. J Nutr 125:2114–2121

    CAS  PubMed  Google Scholar 

  • Watanabe-Kamiyama M, Kamiyama S, Horiuchi K et al (2008) Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br J Nutr 99:756–763

    Article  CAS  PubMed  Google Scholar 

  • Wiedmann S, Eudy JD, Zempleni J (2003) Biotin supplementation increases expression of genes encoding interferon-gamma, interleukin-1beta, and 3-methylcrotonyl-CoA carboxylase, and decreases expression of the gene encoding interleukin-4 in human peripheral blood mononuclear cells. J Nutr 133:716–9

    CAS  PubMed  Google Scholar 

  • Wolf B (2011) The neurology of biotinidase deficiency. Mol Genet Metab 104:27–34

    Article  CAS  PubMed  Google Scholar 

  • Wolf B (2015) Biotinidase deficiency should be considered in individuals exhibiting myelopathy with or without and vision loss. Mol Genet Metab 116:113–118

    Article  CAS  PubMed  Google Scholar 

  • Yuasa M, Matsui T, Ando S et al (2013) Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice. Nutrition 29:1266–1270

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kandil E, Lin YY et al (2004) Targeted inhibition of gene expression of pancreatitis-associated proteins exacerbates the severity of acute pancreatitis in rats. Scand J Gastroenterol 39:870–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Czubryt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Dakshinamurti, K., Dakshinamurti, S., Czubryt, M.P. (2017). Effects of Biotin Deprivation and Biotin Supplementation. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics