Advertisement

Fasting Influences Conditioned Memory for Food Preference Through the Orexin System: Hypothesis Gained from Studies in the Rat

  • Barbara Ferry
  • Patricia Duchamp-Viret
Living reference work entry

Abstract

A large variety of behaviors that are essential for animal survival depend on the processing and perception of surrounding smells present in the natural environment. In particular, food-search behavior, which is conditioned by hunger, is directly driven by the perception of odors associated with food, and feeding status modulates olfactory sensitivity. The orexigenic hypothalamic peptide orexin A, one of the main central and peripheral hormones that triggers food intake, has been shown to increase olfactory sensitivity in various experimental conditions including the conditioned odor aversion learning paradigm. Conditioned odor aversion is an associative task that corresponds to the association between an olfactory conditioned stimulus and a delayed gastric malaise. Previous studies have shown that this association is formed only if the delay separating the conditioned stimulus presentation from the malaise is short, suggesting that the memory trace of the odor is relatively unstable. To test the selective impact of the orexin system in olfactory sensitivity, a recent study compared the effects of fasting and of central infusion of orexin A during the acquisition of conditioned odor aversion. Results showed that the increased olfactory sensitivity induced by fasting or by orexin infusion was accompanied by enhanced conditioned odor aversion learning performances. In reference to the duration of action of orexin, the present work details the results obtained during the successive conditioned odor aversion extinction tests and suggests a hypothesis concerning the role of the orexin component of fasting on the memory processes underlying the odor-malaise association during conditioned odor aversion. Moreover, referring to previous data in the literature, we suggest a functional circuit model where fasting modulates olfactory memory processes through direct and/or indirect activation of particular orexin brain targets including the olfactory bulb, the locus coeruleus, and the amygdala.

Keywords

Associative learning Olfactory memory Orexin Feeding Rat 

List of Abbreviations

aCSF

Artificial cerebrospinal fluid

BLA

Basolateral amygdala

COA

Conditioned odor aversion

CS

Conditioned stimulus

i.p.

Intraperitoneal

Icv

Intracerebroventricular

ISI

Interstimulus interval

LC

Locus coeruleus

LH

Lateral hypothalamus

NA

Norepinephrine

nM

Nanomolar

OB

Olfactory bulb

OX

Orexin

SEM

Standard error of the mean

US

Unconditioned stimulus

μl

Microliter

References

  1. Aimé P, Duchamp-Viret P, Chaput MA, Savigner A, Mahfouz M, Julliard AK (2007) Fasting increases and satiation decreases olfactory detection for a neutral odor in rats. Behav Brain Res 179(2):258–264CrossRefPubMedGoogle Scholar
  2. Andrews EA, Braveman NS (1975) The combined effects of dosage level and interstimulus interval on the formation of one-trial poison-based aversions in rats. Anim Learn Behav 3:287–289CrossRefGoogle Scholar
  3. Apelbaum AF, Chaput MA (2003) Rats habituated to chronic feeding restriction show a smaller increase in olfactory bulb reactivity compared to newly fasted rats. Chem Senses 28:389–395CrossRefPubMedGoogle Scholar
  4. Apelbaum A, Perrut A, Chaput M (2005) Orexin A effects on the olfactory bulb spontaneous activity and odor responsiveness in freely breathing rats. Regul Peptides 129:49–61CrossRefGoogle Scholar
  5. Ardeshiri MR, Hosseinmardi N, Akbari E (2017) The effect of orexin 1 and orexin 2 receptors antagonisms in the basolateral amygdala on memory processing in a passive avoidance task. Physiol Behav 174:42–48.  https://doi.org/10.1016/j.physbeh.2017.03.004 Epub 2017 Mar 6CrossRefPubMedGoogle Scholar
  6. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450CrossRefPubMedGoogle Scholar
  7. Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones BE, Mühlethaler M (2006) Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142(4):999–1004CrossRefPubMedGoogle Scholar
  8. Bouton ME, Jones DE, McPhillips SA, Swartzentruber D (1986) Potentiation and overshadowing in odor-aversion learning: role of method of odor presentation, the distal–proximal cue distinction, and the conditionability of odor. Learn Motiv 17:115–138CrossRefGoogle Scholar
  9. Bures J, Buresova O (1990) Reversible lesions allow reinterpretation of system level studies of brain mechanisms of behavior. Concep Neurosci 1:69–89Google Scholar
  10. Caillol M, Aïoun J, Baly C, Persuy MA, Salesse R (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res 960(1–2):48–61CrossRefPubMedGoogle Scholar
  11. Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ (2017) Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 131(2):155–167.  https://doi.org/10.1037/bne0000185CrossRefPubMedGoogle Scholar
  12. Chapuis J, Garcia S, Messaoudi B, Thevenet M, Ferreira G, Gervais R, Ravel N (2009) The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats. J Neurosci 29(33):10287–10298CrossRefPubMedGoogle Scholar
  13. Chapuis J, Cohen Y, He X, Zhang Z, Jin S, Xu F, Wilson DA (2013) Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination. J Neurosci 33(33):13449–13459CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cleland TA, Linster C (2005) Computation in the olfactory system. Chem Senses 30:801–813CrossRefPubMedGoogle Scholar
  15. De Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik V, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–327CrossRefPubMedGoogle Scholar
  16. Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52PubMedPubMedCentralGoogle Scholar
  17. Di Sebastiano AR, Wilson-Pérez HE, Lehman MN, Coolen LM (2010) Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Horm Behav 59(1):1–8CrossRefPubMedGoogle Scholar
  18. Doucette W, Restrepo D (2008) Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol 6(10):e258CrossRefPubMedPubMedCentralGoogle Scholar
  19. Doucette W, Milder J, Restrepo D (2007) Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. Learn Mem 14(8):539–547CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dudai Y (1996) Consolidation: fragility on the road to the engram. Neuron 17(3):367–370CrossRefPubMedGoogle Scholar
  21. Dudai Y, Morris RGM (2000) To consolidate or not to consolidate: what are the questions? In: Bolhuis JJ (ed) Brain, perception, memory. Advances in cognitive sciences. Oxford University Press, OxfordGoogle Scholar
  22. Edwards CM, Abusnana S, Sunter D, Murphy KG, Ghatei MA, Bloom SR (1999) The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J Endocrinol 160:R7–R12CrossRefPubMedGoogle Scholar
  23. Escanilla O, Alperin S, Youssef M, Ennis M, Linster C (2012) Noradrenergic but not cholinergic modulation of olfactory bulb during processing of near threshold concentration stimuli. Behav Neurosci 126(5):720–728CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180:509–532CrossRefPubMedGoogle Scholar
  25. Ferry B (2014) The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved. Front Behav Neurosci 8:164.  https://doi.org/10.3389/fnbeh.2014.00164 eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ferry B, Di Scala G (1997) Bicuculline administration into basolateral amygdala facilitates trace conditioning of odor aversion in the rat. Neurobiol Learn Mem 67:80–83CrossRefPubMedGoogle Scholar
  27. Ferry B, Di Scala G (2000) Basolateral amygdala NMDA receptors are selectively involved in the acquisition of taste potentiated odor aversion in the rat. Behav Neurosci 114:1005–1010CrossRefPubMedGoogle Scholar
  28. Ferry B, Duchamp-Viret P (2014) The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat. Learn Mem 21(4):185–189.  https://doi.org/10.1101/lm.033688.113CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ferry B, Sandner G, Di Scala G (1995) Neuroanatomical and functional specificity of the basolateral amygdaloid nucleus in taste-potentiated odor aversion. Neurobiol Learn Mem 64(2):169–180CrossRefPubMedGoogle Scholar
  30. Ferry B, Oberling P, Jarrard LE, Di Scala G (1996) Facilitation of conditioned odor aversion by entorhinal cortex lesions in the rat. Behav Neurosci 110:443–450CrossRefPubMedGoogle Scholar
  31. Ferry B, Ferreira G, Traissard N, Majchrzak M (2006) Selective involvement of the lateral entorhinal cortex in the control of the olfactory memory trace during conditioned odor aversion in the rat. Behav Neurosci 120(5):1180–1186CrossRefPubMedGoogle Scholar
  32. Fletcher ML, Chen WR (2010) Neural correlates of olfactory learning: critical role of centrifugal neuromodulation. Learn Mem 17(11):561–570CrossRefPubMedPubMedCentralGoogle Scholar
  33. Garcia J, Ervin FR, Koelling RA (1966) Learning with prolonged delay of reinforcement. Psychon Sci 5:121–122CrossRefGoogle Scholar
  34. Gervais R, Pager J (1982) Functional changes in waking and sleeping rats after lesions in the olfactory pathways. Physiol Behav 29(1):7–15CrossRefPubMedGoogle Scholar
  35. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD (1999) Orexin a activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96(19):10911–10916CrossRefPubMedGoogle Scholar
  36. Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res 64:14–103CrossRefGoogle Scholar
  37. Hankins WG, Garcia J, Rusiniak KW (1973) Dissociation of odor and taste in baitshyness. Behav Biol 8:407–419CrossRefPubMedGoogle Scholar
  38. Hardy AB, Aioun J, Baly C, Julliard KA, Caillol M, Salesse R, Duchamp-Viret P (2005) Orexin A modulates mitral cell activity in the rat olfactory bulb: patch-clamp study on slices and immunocytochemical localization of orexin receptors. Endocrinol 146(9):4042–4053CrossRefGoogle Scholar
  39. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559CrossRefGoogle Scholar
  40. Holland P (1990) Event representation in pavlovian conditioning: image and action. Cognition 37:105–131CrossRefPubMedGoogle Scholar
  41. Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415(2):145–159CrossRefPubMedGoogle Scholar
  42. Inui T, Shimura T, Yamamoto T (2006) Effects of brain lesions on taste-potentiated odor aversion in rats. Behav Neurosci 120:590–599CrossRefPubMedGoogle Scholar
  43. Jaeger LB, Farr SA, Banks WA, Morley JE (2002) Effects of orexin-A on memory processing. Peptides 23(9):1683–1688CrossRefGoogle Scholar
  44. Julliard AK, Chaput MA, Apelbaum A, Aimé P, Mahfouz M, Duchamp-Viret P (2007) Changes in rat olfactory detection performance induced by orexin and leptin mimicking fasting and satiation. Behav Brain Res 183(2):123–129CrossRefPubMedGoogle Scholar
  45. King BM. Amygdaloid lesion-induced obesity: relation to sexual behavior, olfaction, and the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 291(5):R1201–R1214Google Scholar
  46. Kunii K, Yamanaka A, Nambu T, Matsuzaki I, Goto K, Sakurai T (1999) Orexins/hypocretins regulate drinking behaviour. Brain Res 842:256–261CrossRefPubMedGoogle Scholar
  47. Le Magnen J (1959) The role of olfacto-gustatory stimuli in the regulation of the alimentary behavior of the mammal. J Psychol Norm Pathol (Paris) 56:137–160Google Scholar
  48. Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw 15:709–717CrossRefPubMedGoogle Scholar
  49. Lorden JF, Kenfield M, Braun JJ (1970) Response suppression to odors paired with toxicosis. Learn Motiv 1:391–400CrossRefGoogle Scholar
  50. Lu XY, Bagnol D, Burke S, Akil H, Watson SJ (2000) Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav 37(4):335–344CrossRefPubMedGoogle Scholar
  51. Mackintosh NJ (1991) Simple conditioning. In: Lister RG, Weingartner HJ (eds) Perspectives on cognitive neuroscience. Oxford University Press, pp 65–75Google Scholar
  52. Mair RG, Hembrook JR (2008) Memory enhancement with event-related stimulation of the rostral intralaminar thalamic nuclei. J Neurosci 28(52):14293–14300CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mandairon N, Linster C (2009) Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 101(5):2204–2209CrossRefPubMedGoogle Scholar
  54. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25CrossRefPubMedGoogle Scholar
  55. McLean JH, Shipley MT, Nickell WT, Aston-Jones G, Reyher CK (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J Comp Neurol 285(3):339–349CrossRefPubMedGoogle Scholar
  56. Miranda MI (2012) Taste and odor recognition memory: the emotional flavor of life. Rev Neurosci 23(5–6):481–499PubMedGoogle Scholar
  57. Miranda MA, Ferry B, Ferreira G (2007) Basolateral amygdala noradrenergic activity is involved in the acquisition of conditioned odor aversion in the rat. Neurobiol Learn Mem 88:260–263CrossRefPubMedGoogle Scholar
  58. Mullett MA, Billington CJ, Levine AS, Kotz CM (2000) Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport 11(1):103–108CrossRefPubMedGoogle Scholar
  59. Mulligan C, Moreau K, Brandolini M, Livingstone B, Beaufrère B, Boirie Y (2002) Alterations of sensory perceptions in healthy elderly subjects during fasting and refeeding. A pilot study. Gerontology 48(1):39–43CrossRefPubMedGoogle Scholar
  60. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260CrossRefPubMedGoogle Scholar
  61. Nigrosh BJ, Slotnick BM, Nervin JA (1975) Olfactory discrimination, reversal learning, and stimulus control in rats. J Comp Physiol Psychol 89:285–294CrossRefPubMedGoogle Scholar
  62. O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11(4):893–897CrossRefPubMedGoogle Scholar
  63. Pager J (1974) A selective modulation of the olfactory bulb electrical activity in relation to the learning of palatability in hungry and satiated rats. Physiol Behav 12(2):189–195CrossRefPubMedGoogle Scholar
  64. Pager J (1978) Ascending olfactory information and centrifugal influx contributing to a nutritional modulation of the rat mitral cell responses. Brain Res 140:251–269CrossRefPubMedGoogle Scholar
  65. Pager J, Giachetti I, Holley A, Le Magnen J (1972) A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol Behav 9(4):573–579CrossRefPubMedGoogle Scholar
  66. Petrovich GD (2013) Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 121:10–18.  https://doi.org/10.1016/j.physbeh.2013.03.024CrossRefPubMedPubMedCentralGoogle Scholar
  67. Peyron C, Tighe D, Vanden Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015CrossRefPubMedGoogle Scholar
  68. Prud'Homme MJ, Lacroix MC, Badonnel K, Gougis S, Baly C, Salesse R, Caillol M (2009) Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin. Neuroscience 162(4):1287–1298CrossRefPubMedGoogle Scholar
  69. Rescorla RA (1988) Behavioral studies of Pavlovian conditioning. Annu Rev Neurosci 11:329–352CrossRefPubMedGoogle Scholar
  70. Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36(5):303–325CrossRefPubMedGoogle Scholar
  71. Roldan G, Bures J (1994) Tetrodotoxin blockade of amygdala overlapping with poisoning impairs acquisition of conditioned taste aversion in rats. Behav Brain Res 65:213–219CrossRefPubMedGoogle Scholar
  72. Royet JP, Gervais R, Araneda S (1983) Effect of local 6-OHDA and 5,6-DHT injections into the rat olfactory bulb on neophobia and learned aversion to a novel food. Behav Brain Res 10:297–309CrossRefPubMedGoogle Scholar
  73. Rusiniak KW, Palmerino CC, Rice AG, Forthman DL, Garcia J (1982) Flavor-illness aversions: potentiation of odor by taste with toxin but not shock in rats. J Comp Physiol Psychol 96:527–539CrossRefPubMedGoogle Scholar
  74. Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70(4):582–588CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sakurai T (2005) Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 9:231–241CrossRefPubMedGoogle Scholar
  76. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585CrossRefGoogle Scholar
  77. Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197(2):291–317CrossRefPubMedGoogle Scholar
  78. Schmitt O, Usunoff KG, Lazarov NE, Itzev DE, Eipert P, Rolfs A, Wree A (2012) Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct Funct 217(2):233–256CrossRefPubMedGoogle Scholar
  79. Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. PNAS 110(50):20260–20265.  https://doi.org/10.1073/pnas.1320325110CrossRefPubMedGoogle Scholar
  80. Shibata M, Mondal MS, Date Y, Nakazato M, Suzuki H, Ueta Y (2008) Distribution of orexins-containing fibers and contents of orexins in the rat olfactory bulb. Neurosci Res 61(1):99–105CrossRefPubMedGoogle Scholar
  81. Slotnick BM (1984) Olfactory stimulus control in the rat. Chem Senses 9:157–165CrossRefGoogle Scholar
  82. Slotnick BM, Katz HM (1974) Olfactory learning set formation in rats. Science 185:796–798CrossRefPubMedGoogle Scholar
  83. Slotnick BM, Westbrook F, Darling FMC (1997) What the rat's nose tells the rat's mouth: long delay aversion conditioning with aqueous odors and potentiation of taste by odors. Anim Learn Behav 25:357–369CrossRefGoogle Scholar
  84. Sullivan RM, Stackenwalt G, Nasr F, Lemon C, Wilson DA (2000) Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci 114:957–962CrossRefPubMedPubMedCentralGoogle Scholar
  85. Swanson LW, Sanchez-Watt G, Watt AG (2005) Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neurosci Lett 387:80–84CrossRefPubMedGoogle Scholar
  86. Taukulis HK (1974) Odor aversions produced over long CS-US delays. Behav Biol 10:505–510CrossRefPubMedGoogle Scholar
  87. Telegdy G, Adamik A (2002) The action of orexin a on passive avoidance learning. Regul Pept 104(1–3):105–110CrossRefPubMedGoogle Scholar
  88. Touzani K, Sclafani A (2002) Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur J Neurosci 16(12):2425–2433CrossRefPubMedGoogle Scholar
  89. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438(1–2):71–75CrossRefPubMedGoogle Scholar
  90. Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458CrossRefPubMedGoogle Scholar
  91. Wilson DA, Sullivan RM (2011) Cortical processing of odor objects. Neuron 72(4):506–519CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yuan Q, Harley CW, McLean JH (2003) Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10:5–15CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS UMR 5292 – INSERM U1028 – UCBL1Centre de Recherche en Neurosciences de LyonLyonFrance

Personalised recommendations