Nutritional Consequences of Amyotrophic Lateral Sclerosis

  • Rup TandanEmail author
  • Waqar Waheed
  • Connor Scagnelli
Living reference work entry


Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by degeneration of the motor neurons in the brain, brain stem, and spinal cord. Clinically, there are dysphagia and dysarthria from bulbar involvement and muscle weakness with atrophy that result in profound and progressive weakness, respiratory failure, and death within 3 to 4 years from onset. Malnutrition is present in a substantial proportion of patients, with energy or caloric deficiency predominating. The malnutrition is of multifactorial origin, resulting not only from decreased energy intake but also from increased caloric expenditure related to physical activity and hypermetabolism. Several techniques detect malnutrition, ranging from simple anthropometry to the estimation of body composition to define loss of muscle and body fat, indirect calorimetry to demonstrate increased resting energy expenditure, and doubly labeled water methodology to show increased total daily energy expenditure. Malnutrition has several adverse consequences, including accelerated disease progression and early death. This chapter describes an algorithmic approach to nutritional care in ALS, preferably undertaken through regular visits to a multidisciplinary clinic with staffed experienced healthcare providers. This chapter also provides recommendations for reliably estimating energy intake and expenditure needs of patients to ensure energy balance.


Amyotrophic lateral sclerosis Basal metabolic rate Body composition Body mass index Dysphagia Energy expenditure Energy intake Fat mass Fat-free mass Harris-Benedict equation Hypermetabolism Indirect calorimetry Non-exercise activity thermogenesis Percutaneous endoscopic gastrostomy Resting energy expenditure Weight loss 

List of Abbreviations


American Academy of Neurology


Agouti-related peptide


Amyotrophic lateral sclerosis


Amyotrophic lateral sclerosis functional rating scale-revised


Amyotrophic lateral sclerosis-frontotemporal dementia


ALS-plus (cognitive and behavioral changes insufficient for diagnosis of FTD)


Arm muscle area


Apolipoprotein E


Adenosine triphosphatase


Bioelectrical impedance analysis


Bioelectrical impedance spectroscopy


Body mass index


Basal metabolic rate


Confidence interval


Calculated resting energy expenditure


Dual-energy x-ray absorptiometry


Doubly labeled water


Extracellular fluid


European Federation of Neurological Societies


Enteral tube feeding


Familial amyotrophic lateral sclerosis


Fat-free mass


Fat mass


Fused in sarcoma


Forced vital capacity


Geriatric nutritional risk index




Hazard ratio


Intracellular fluid




Mid-arm circumference


Mid-arm muscle circumference


Measured resting energy expenditure


Mechanical ventilation




Non-exercise activity thermogenesis


Nasogastric tube


Noninvasive ventilation


Phase angle


Protein-caloric malnutrition score


Percutaneous endoscopic gastrostomy


Parenteral nutrition




Quality of life


Recommended daily allowance


Resting energy expenditure


Radiologically inserted gastrostomy


Relative risk


Sporadic amyotrophic lateral sclerosis


Superoxide dismutase






Total daily energy expenditure


Transactive response DNA-binding protein


Triceps skinfold


United Kingdom


  1. Ahmed RM, Caga J, Devenney E et al (2016) Cognition and eating behavior in amyotrophic lateral sclerosis. J Neurol 263:1593–1603PubMedCrossRefGoogle Scholar
  2. Atassi N, Berry J, Shui A et al (2014) The PRO-ACT database. Design, initial analyses, and predictive features. Neurology 83:1719–1725PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baltadzhieva R, Gurevich T, Korczyn AD (2005) Autonomic impairment in amyotrophic lateral sclerosis. Curr Opin Neurol 18:487–493PubMedCrossRefGoogle Scholar
  4. Bouteloup C, Desport JC, Clavelou P et al (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256(8):1236–1242CrossRefGoogle Scholar
  5. Chiò A, Calvo A, Bovio G, Piemonte and Valle d’Aosta register for amyotrophic lateral sclerosis et al (2014) Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: a population-based study. JAMA Neurol 71(9):1134–1142PubMedCrossRefGoogle Scholar
  6. Clavelou P, Blanquet M, Peyrol F et al (2013) Rates of progression of weight and forced vital capacity as relevant measurement to adapt amyotrophic lateral sclerosis management for patient. Result of a French multicenter cohort study. J Neurol Sci 331:126–131PubMedCrossRefGoogle Scholar
  7. Czell D, Bauer M, Binek J et al (2013) Outcomes of percutaneous endoscopic gastrostomy tube insertion in respiratory impaired amyotrophic lateral sclerosis patients under noninvasive ventilation. Respir Care 58(5):838–844PubMedGoogle Scholar
  8. Desport JC, Preux PM, Truong CT et al (1999) Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53:1059–1063PubMedCrossRefGoogle Scholar
  9. Desport JC, Preux PM, Truong CT et al (2000) Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 1(2):91–96PubMedCrossRefGoogle Scholar
  10. Desport JC, Preux PM, Magy L et al (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 74(3):328–334CrossRefGoogle Scholar
  11. Desport JC, Preux PM, Bouteloup-Demange C et al (2003) Validation of bioelectrical impedance analysis in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 77(5):1179–1185PubMedCrossRefGoogle Scholar
  12. Desport JC, Torny F, Lacoste M et al (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2(3–4):202–207PubMedCrossRefGoogle Scholar
  13. Desport JC, Marin B, Funalot B et al (2008) Phase angle is a prognostic factor for survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Scler 9:273–278CrossRefGoogle Scholar
  14. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82PubMedCrossRefGoogle Scholar
  15. Dupuis L, Dengler R, Heneka MT (2012) A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 7:e37885PubMedPubMedCentralCrossRefGoogle Scholar
  16. EFNS Task Force on Diagnosis and management of Amyotrophic lateral Sclerosis (2012) Andersen PM, Abrahams S, Borasio GD et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS) – revised report of an EFNS task force. Eur J Neurol 19(3):360–375CrossRefGoogle Scholar
  17. Ellis AC, Rosenfeld J (2011) Which equation best predicts energy expenditure in amyotrophic lateral sclerosis. J Am Diet Assoc 111:1680–1687PubMedCrossRefGoogle Scholar
  18. Funalot B, Desport J-C, Sturtz F et al (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117PubMedCrossRefGoogle Scholar
  19. Gallo V, Wark PA, Jenab M et al (2013) Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis. Neurology 80:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  20. Georges M, Morelot-Panzini C, Similowski T, Gonzalez-Bermejo J (2014) Noninvasive ventilation reduces energy expenditure in amyotrophic lateral sclerosis. BMC Pulm Med 14:17PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gil J, Preux P-M, Alioum A et al (2007) Disease progression and survival in ALS: first multi-state model approach. Amyotroph Lateral Scler Frontotemporal Degen 8:224–229CrossRefGoogle Scholar
  22. Harris JA, Benedict FG (1918) A biometric study of human basal metabolism. Proc Natl Acad Sci U S A 4:370–373PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hisham M, Moledina J, Travis J (2008) Re-feeding syndrome: what it is, and how to prevent and treat it. BMJ 336(7659):1495–1149CrossRefGoogle Scholar
  24. Ichihara N, Namba K, Ishikawa-Takata K et al (2012) Energy requirement assessed by doubly-labeled water method in patients with advanced amyotrophic lateral sclerosis managed by tracheotomy positive pressure ventilation. Amyotrophic Lateral Scler 13:544–549CrossRefGoogle Scholar
  25. Jawaid A, Murthy SB, Wilson AM et al (2010) A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph Lateral Scler 11:542–548PubMedCrossRefGoogle Scholar
  26. Jesus P, Massoulard A, Marin B et al (2012) First assessment at home of amyotrophic lateral sclerosis (ALS) patients by a nutrition network in the French region of Limousin. Amyotroph Lateral Scler Frontotemporal Degen 13:538–543CrossRefGoogle Scholar
  27. Kanda F, Fujii Y, Takahashi K, Fujita T (1994) Dual-energy X-ray absorptiometry in neuromuscular diseases. Muscle Nerve 17:431–435PubMedCrossRefGoogle Scholar
  28. Kasarskis EJ, Berryman S, Vanderleest JG et al (1996) Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr 63:130–137PubMedCrossRefGoogle Scholar
  29. Kasarskis EJ, Berryman S, English T et al (1997) The use of upper extremity anthropometrics in the clinical assessment of patients with amyotrophic lateral sclerosis. Muscle Nerve 20:330–335PubMedCrossRefGoogle Scholar
  30. Kasarskis EJ, Scarlata D, Hill R et al (1999) A retrospective study of percutaneous endoscopic gastrostomy in ALS patients during the BDNF and CNTF trials. J Neurol Sci 169(1–2):118–125PubMedCrossRefGoogle Scholar
  31. Kasarskis EJ, Mendiondo MS, Matthews DE et al (2014) And ALS nutrition/NIPPV study group. Estimating daily energy expenditure in individuals with amyotrophic lateral sclerosis. Amer. J Clin Nutr 99(4):792–803CrossRefGoogle Scholar
  32. Korner S, Hendricks M, Kollewe K et al (2013) Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol 13:84PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lacomblez L, Doppler V, Beucler I et al (2002) APOE: a potential marker of disease progression in ALS. Neurology 58(7):1112–1114PubMedCrossRefGoogle Scholar
  34. Leckstrom A, Lew PS, Poritsanos NJ, Mizuno TM (2011) Central melanocortin receptor agonist reduces hepatic lipogenic gene expression in streptozotocin-induced diabetic mice. Life Sci 88:664–695PubMedCrossRefGoogle Scholar
  35. Lee J, Baek H, Kim SH, Park Y (2017) Association between estimated total daily energy expenditure and stage of amyotrophic lateral sclerosis. Nutrition 33:181–186PubMedCrossRefGoogle Scholar
  36. Lekoubou A, Matsha TE, Sobngwi E, Kengne AP (2014) Effects of diabetes mellitus on amyotrophic lateral sclerosis: a systematic review. BMC Res Notes 7:171PubMedPubMedCentralCrossRefGoogle Scholar
  37. Limousin N, Blasco H, Corcia P et al (2010) Malnutrition at the time of diagnosis is associated with a shorter disease duration in ALS. J Neurol Sci 297:36–39PubMedCrossRefGoogle Scholar
  38. Lindauer E, Dupuis L, Muller HP et al (2013) Adipose tissue distribution predicts survival in amyotrophic lateral sclerosis. PLoS One 8:e67783PubMedPubMedCentralCrossRefGoogle Scholar
  39. Marin B, Desport JC, Kajeu P et al (2011) Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 82:628–634PubMedCrossRefGoogle Scholar
  40. Marin B, Arcuti S, Jesus P et al (2016) Population-based evidence that survival in amyotrophic lateral sclerosis is related to weight loss at diagnosis. Neurodegener Dis 16:225–234PubMedCrossRefGoogle Scholar
  41. Mazzini L, Corra T, Zaccala M et al (1995) Percutaneous endoscopic gastrostomy and enteral nutrition in amyotrophic lateral sclerosis. J Neurol 242:695–698PubMedCrossRefGoogle Scholar
  42. Meininger V, Bensimon G, Lacomblez L et al (1995) Natural history of amyotrophic lateral sclerosis: a discussion. In: Serratrice GT, Munsat TL (eds) Pathogenesis and therapy of amyotrophic lateral sclerosis. Philadelphia, Lippincott, pp 199–207Google Scholar
  43. Miller RG, Jackson CE, Kasarskis EJ et al (2009) Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology 73(15):1218–1226PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mitsumoto H, Davidson M, Moore D et al (2003) Percutaneous endoscopic gastrostomy (PEG) in patients with ALS and bulbar dysfunction. Amyotroph Lateral Scler 4(3):177–185CrossRefGoogle Scholar
  45. Muscaritoli M, Kushta I, Molfino A et al (2012) Nutritional and metabolic support in patients with amyotrophic lateral sclerosis. Nutrition 28:959–966PubMedCrossRefGoogle Scholar
  46. Nau KL, Bromberg MB, Forshew DA, Katch VL (1995) Individuals with amyotrophic lateral sclerosis are in caloric balance despite losses in mass. J Neurol Sci 129(Suppl):47–49PubMedCrossRefGoogle Scholar
  47. Nau KL, Dick A, Peters K, Schloerb PR (1997) Relative validity of clinical techniques for measuring the body composition of persons with amyotrophic lateral sclerosis. J Neurol Sci 152(Suppl 1):S36–S42PubMedCrossRefGoogle Scholar
  48. Obici S, Feng Z, Tan J et al (2001) Central melanocortin receptors regulate insulin action. J Clin Invest 108:1079–1085PubMedPubMedCentralCrossRefGoogle Scholar
  49. Paganoni S, Deng J, Jaffa M et al (2011) Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 44:20–24PubMedPubMedCentralCrossRefGoogle Scholar
  50. Park Y, Park J, Kim Y et al (2015) Association between nutritional status and disease severity using the amyotrophic lateral sclerosis (ALS) functional rating scale in ALS patients. Nutrition 31:1362–1367PubMedCrossRefGoogle Scholar
  51. Perez-Tilve D, Hofmann SM, Basford J et al (2010) Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci 13:877–882PubMedPubMedCentralCrossRefGoogle Scholar
  52. Pessolano FA, Suarez AA, Monteiro SG et al (2003) Nutritional assessment of patients with neuromuscular diseases. Am J Phys Med Rehabil 82:182–185PubMedGoogle Scholar
  53. Pontes-Arruda A, Demichele S, Seth A, Singer P (2008) The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN 32:596–605CrossRefGoogle Scholar
  54. ProGas Study Group (2015) Gastrostomy in patients with amyotrophic lateral sclerosis (pro gas): a prospective cohort study. Lancet Neurol 14:702–709PubMedCentralCrossRefGoogle Scholar
  55. Reich-Slotky R, Andrews J, Cheng B et al (2013) Body mass index (BMI) as a predictor of ALSFRS-R score decline in ALS patients. Amyotroph Lateral Scler Frontotemporal Degen 14:212–216CrossRefGoogle Scholar
  56. Rio A, Ellis C, Shaw C et al (2010) Nutritional factors associated with survival following enteral tube feeding in patients with motor neurone disease. Journal Hum Nutr Diet 23:408–415CrossRefGoogle Scholar
  57. Sheard JM (2014) Malnutrition and neurodegenerative diseases. Current Nutrition Reports 3:102–109CrossRefGoogle Scholar
  58. Sherman MS, Pillai A, Jackson A, Heiman-Patterson T (2004) Standard equations are not accurate in assessing resting energy expenditure in patients with amyotrophic lateral sclerosis. J Paren Ent Nutr 28:442–446CrossRefGoogle Scholar
  59. Shimizu T, Hayashi H, Tanabe H (1991) Energy metabolism of ALS patients under mechanical ventilation and tube feeding.[Article in Japanese. Rinsho Shinkeigaku 31(3):255–259PubMedGoogle Scholar
  60. Shimizu T, Nagaoka U, Nakayama Y et al (2012) Reduction rate of body mass index predicts prognosis for survival in amyotrophic lateral sclerosis: a multicenter study in Japan. Amyotroph Lateral Scler 13:363–366PubMedCrossRefGoogle Scholar
  61. Shimizu T, Ishikawa-Takata K, Sakata A et al (2017) The measurement and estimation of total energy expenditure in Japanese patients with ALS: a doubly labelled water method study. Amyotroph Lateral Scler Frontotemporal Degen 18:37–45CrossRefGoogle Scholar
  62. Siirala W, Olkkola KT, Noponen T et al (2010) Predictive equations over-estimate the resting energy expenditure in amyotrophic lateral sclerosis patients who are dependent on invasive ventilation support. Nutr & Metab 7:70CrossRefGoogle Scholar
  63. Silva LBC, Mourao LF, Silva AA et al (2008) Combined nutritional, respiratory and functional assessment. Arq Neuropsiquiatr 66(2-B):354–359PubMedCrossRefGoogle Scholar
  64. Slowie LA, Paige MS, Antel JP (1983) Nutritional considerations in the management of patients with amyotrophic lateral sclerosis (ALS). J Am Diet Assoc 83:44–47PubMedGoogle Scholar
  65. Sohn JW, Harris LE, Berglund ED et al (2013) Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152:612–619PubMedPubMedCentralCrossRefGoogle Scholar
  66. Stambler N, Charatan M, Cedarbaum JM et al (1998) Prognostic indicators of survival in ALS. Neurology 50:66–72PubMedCrossRefGoogle Scholar
  67. Tandan R (2000) Prevalence of nutritional deficiency and its effect on survival in amyotrophic lateral sclerosis. Neurol Netw Comment 3:335–339Google Scholar
  68. Thompson AG, Blackwell V, Marsden R et al (2017) A risk-stratifying tool to facilitate safe late-stage percutaneous endoscopic gastrostomy in ALS. Amyotroph Lateral Scler Frontotemporal Degener 19:1–6Google Scholar
  69. Vaisman N, Lusaus M, Nefussy B et al (2009) Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J Neurol Sci 279:26–29PubMedCrossRefGoogle Scholar
  70. Van Damme P, Robberecht W (2013) Clinical implications of recent breakthroughs in amyotrophic lateral sclerosis. Curr Opin Neurol 26(5):466–472PubMedCrossRefGoogle Scholar
  71. Vercruysse P, Sinniger J, El Oussini H et al (2016) Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139.(Pt 4:1106–1122PubMedCrossRefGoogle Scholar
  72. Verschueren A, Monnier A, Attarian S et al (2009) Enteral and parenteral nutrition in the later stages of ALS: an observational study. Amyotroph Lateral Scler 10(1):42–46PubMedCrossRefGoogle Scholar
  73. Wang B, Chehab FF (2006) Deletion of the serotonin 2c receptor from transgenic mice overexpressing leptin does not affect their lipodystrophy but exacerbates their diet-induced obesity. Biochem Biophys Res Commun 351:418–423PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wolf J, Safer A, Wohrle JC et al (2014) Factors predicting one-year mortality in amyotrophic lateral sclerosis – data from a population-based registry. BMC Neurol 14:197PubMedPubMedCentralCrossRefGoogle Scholar
  75. Worwood AM, Leigh PN (1998) Indicators and prevalence of malnutrition in motor neurone disease. Eur Neurol 40:159–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurological SciencesRobert Larner, MD College of Medicine and University of Vermont Medical CenterBurlingtonUSA

Personalised recommendations