Advertisement

Global Aerobic Degradation of Hydrocarbons in Aquatic Systems

  • Sara Kleindienst
  • Samantha B. Joye
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Gaseous and liquid petroleum hydrocarbons are ubiquitous in the global marine environment either as a consequence of natural inputs or via anthropogenic contamination. Specific microorganisms have the ability to utilize hydrocarbons as carbon and energy sources under both oxic and anoxic conditions. Hydrocarbon biodegradation is therefore highly beneficial as this process impacts the fate of hydrocarbons and moderates risks posed to humans and the environment by hydrocarbon exposure. This chapter describes the current knowledge of aerobic microbial hydrocarbon degradation in aqueous environments, focusing on the largest of Earth’s aquatic ecosystems – the marine environment. Natural gas and oil seeps and two major spill scenarios, the Deepwater Horizon blowout and the Prestige vessel disaster, are presented to describe how hydrocarbon-degrading microorganisms respond to slow diffusive natural discharges and to large anthropogenic pollution events. Future research challenges discussed include the development of approaches and strategies to assess aerobic microbial hydrocarbon degradation on a global scale.

Keywords

Hydrocarbon Degradation Deepwater Horizon Hydrocarbon Degrader Dioctyl Sodium Sulfosuccinate Hydrocarbon Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

SBJ’s effort in writing this chapter was made possible by a grant from The Gulf of Mexico Research Initiative supporting the ECOGIG-2 (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) research consortium. This is ECOGIG contribution number 469.

References

  1. Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807CrossRefPubMedGoogle Scholar
  2. Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B (2009) Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl Environ Microbiol 75:3407–3418CrossRefPubMedPubMedCentralGoogle Scholar
  3. An YJ (2004) Toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) mixtures to Sorghum bicolor and Cucumis sativus. Bull Environ Contam Toxicol 72:1006–1011CrossRefPubMedGoogle Scholar
  4. Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeter Biodegr 35:317–327CrossRefGoogle Scholar
  5. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318CrossRefPubMedGoogle Scholar
  6. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atlas RM, Horowitz A, Krichevsky M, Bej AK (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256CrossRefPubMedGoogle Scholar
  8. Bargiela R, Herbst FA, Martinez-Martinez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN (2015) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520CrossRefPubMedPubMedCentralGoogle Scholar
  9. Birch LD, Bachofen R (1988) Microbial production of hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology – special microbial processes. VCH Verlagsgesellschaft, Weinheim, pp 71–99Google Scholar
  10. Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486CrossRefPubMedPubMedCentralGoogle Scholar
  11. Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204CrossRefPubMedGoogle Scholar
  12. Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2015) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49:847–854CrossRefPubMedGoogle Scholar
  13. Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448CrossRefPubMedGoogle Scholar
  14. Cozzarelli IM, Herman JS, Baedecker MJ (1995) Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ Sci Technol 29:458–469CrossRefPubMedGoogle Scholar
  15. de la Huz R, Lastra M, Junoy J, Castellanos C, Viéitez JM (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the “Prestige” oil spill. Estuar Coast Shelf Sci 65:19–29CrossRefGoogle Scholar
  16. D’souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A, Phan S, Yan B, MacDonald IR, Weber SC, Montoya JP (2016) Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat Geosci 9:215–218CrossRefGoogle Scholar
  17. Diercks A-R, Highsmith RC, Asper VL, Joung D, Zhou Z, Guo L, Shiller AM, Joye SB, Teske AP, Guinasso N, Wade TL, Lohrenz SE (2010) Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys Res Lett 37:L20602CrossRefGoogle Scholar
  18. Diez S, Sabatte J, Vinas M, Bayona JM, Solanas AM, Albaiges J (2005) The Prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. Environ Toxicol Chem 24:2203–2217CrossRefPubMedGoogle Scholar
  19. Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. doi: 10.1038/nmicrobiol.2016.57 PubMedGoogle Scholar
  20. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867CrossRefPubMedGoogle Scholar
  21. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123CrossRefPubMedGoogle Scholar
  22. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119CrossRefPubMedCentralGoogle Scholar
  23. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090CrossRefGoogle Scholar
  24. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefPubMedGoogle Scholar
  25. Gagic D, Maclean PH, Li D, Attwood GT, Moon CD (2015) Improving the genetic representation of rare taxa within complex microbial communities using DNA normalization methods. Mol Ecol Resour 15:464–476CrossRefPubMedGoogle Scholar
  26. Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911PubMedGoogle Scholar
  27. Gray JL, Kanagy LK, Furlong ET, Kanagy CJ, McCoy JW, Mason A, Lauenstein G (2014) Presence of the Corexit component dioctyl sodium sulfosuccinate in Gulf of Mexico waters after the 2010 Deepwater Horizon oil spill. Chemosphere 95:124–130CrossRefPubMedGoogle Scholar
  28. Gunnison D, Alexander M (1975) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738PubMedPubMedCentralGoogle Scholar
  29. Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hambrick GA, DeLaune RD, Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369PubMedPubMedCentralGoogle Scholar
  32. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208CrossRefPubMedGoogle Scholar
  33. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352CrossRefPubMedGoogle Scholar
  34. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefPubMedGoogle Scholar
  35. Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473CrossRefGoogle Scholar
  36. Heipieper HJ, Martínez PM (2010) Toxicity of hydrocarbons to microorganisms. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1563–1573CrossRefGoogle Scholar
  37. Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585CrossRefPubMedGoogle Scholar
  38. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus1. Limnol Oceanogr 30:111–122CrossRefGoogle Scholar
  39. Joye SB (2015) Deepwater Horizon, 5 years on. Science 349:592–593CrossRefPubMedGoogle Scholar
  40. Joye SB, MacDonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4:160–164CrossRefGoogle Scholar
  41. Joye SB, Bracco A, Özgökmen TM, Chanton JP, Grosell M, MacDonald IR, Cordes EE, Montoya JP, Passow U (2016) The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep-Sea Res Pt II 129:4–19CrossRefGoogle Scholar
  42. Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710CrossRefPubMedGoogle Scholar
  43. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112:14900–14905CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415CrossRefPubMedGoogle Scholar
  46. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45:1298–1306CrossRefPubMedGoogle Scholar
  47. Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345CrossRefGoogle Scholar
  48. Lamendella R, Strutt S, Borglin SE, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson J (2014) Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5Google Scholar
  49. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  50. Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A 112:13591–13596CrossRefPubMedPubMedCentralGoogle Scholar
  51. Loureiro ML, Loomis JB, Vázquez MX (2009) Economic valuation of environmental damages due to the Prestige oil spill in Spain. Environ Resour Econ 44:537–553CrossRefGoogle Scholar
  52. Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421CrossRefGoogle Scholar
  53. Lynch MD, Bartram AK, Neufeld JD (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J 6:2067–2077CrossRefPubMedPubMedCentralGoogle Scholar
  54. MacDonald JA (2000) Peer reviewed: evaluating natural attenuation for groundwater cleanup. Environ Sci Technol 34:346A–353ACrossRefPubMedGoogle Scholar
  55. MacDonald IR, Garcia-Pineda O, Beet A, Daneshgar Asl S, Feng L, Graettinger G, French-McCay D, Holmes J, Hu C, Huffer F, Leifer I, Muller-Karger F, Solow A, Silva M, Swayze G (2015) Natural and unnatural oil slicks in the Gulf of Mexico. J Geophys Res 120:8364–8380CrossRefGoogle Scholar
  56. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefPubMedGoogle Scholar
  57. Marozava S, Roling WF, Seifert J, Kuffner R, von Bergen M, Meckenstock RU (2014) Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. Syst Appl Microbiol 37:277–286CrossRefPubMedGoogle Scholar
  58. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  59. McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20260–20267CrossRefPubMedGoogle Scholar
  60. Medina-Bellver JI, Marin P, Delgado A, Rodriguez-Sanchez A, Reyes E, Ramos JL, Marques S (2005) Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ Microbiol 7:773–779CrossRefPubMedGoogle Scholar
  61. Mishamandani S, Gutierrez T, Berry D, Aitken MD (2016) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 18:1817–1833CrossRefPubMedGoogle Scholar
  62. Mitra S, Roy P (2011) BTEX: a serious ground-water contaminant. Res J Environ Sci 5:394–398CrossRefGoogle Scholar
  63. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, García-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 77:1076–1085CrossRefPubMedGoogle Scholar
  64. National-Commission-on-the-BP-Deepwater-Horizon-Oil-Spill-and-Offshore-Drilling (2011). The use of surface and subsea dispersants during the BP Deepwater Horizon oil spill. <http://cybercemetery.unt.edu/archive/oilspill/20121211010455/http://www.oilspillcommission.gov/sites/default/files/documents/Updated Dispersants Working Paper.pdf>
  65. National Research Council (2003) Committee on oil in the sea III: inputs, fates, and effects. The National Academic Press, Washington, DCGoogle Scholar
  66. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res Pt II 57:2008–2021CrossRefGoogle Scholar
  67. Passow U, Ziervogel K (2016) Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29:118–125CrossRefGoogle Scholar
  68. Pickering RW (1999) A toxicological review of polycyclic aromatic hydrocarbons. J Toxicol Cutan Ocul Toxicol 18:101–135CrossRefGoogle Scholar
  69. Ploug H, Kühl M, Buchholz-Cleven B, Jørgensen BB (1997) Anoxic aggregates – an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol 13:285–294CrossRefGoogle Scholar
  70. Putscher RE (1952) Isolation of olefins from Bradford crude oil. Anal Chem 24:1551–1558CrossRefGoogle Scholar
  71. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20229–20234CrossRefPubMedGoogle Scholar
  72. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–20297CrossRefPubMedGoogle Scholar
  73. Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA (2013) Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J 7:2315–2329CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J 9:1928–1940CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A 112:4015–4020CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5:e01371–e01314CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. InTech. doi: 10.5772/55920. Available from: http://www.intechopen.com/books/biodegradation-engineering-and-technology/microbial-hydrocarbon-degradation-efforts-to-understand-biodegradation-in-petroleum-reservoirs
  78. Socolofsky SA, Adams EE, Sherwood CR (2011) Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophys Res Lett 38:L09602CrossRefGoogle Scholar
  79. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100CrossRefPubMedGoogle Scholar
  81. Tecon R, Binggeli O, van der Meer JR (2009) Double-tagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability. Environ Microbiol 11:2271–2283CrossRefPubMedGoogle Scholar
  82. Tikhonov M, Leach RW, Wingreen NS (2015) Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 9:68–80CrossRefPubMedGoogle Scholar
  83. Tissot BP, Welte DH (1984) Petroleum formation and occurrence: a new approach to oil and gas exploration, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  84. Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291CrossRefPubMedPubMedCentralGoogle Scholar
  85. von Netzer F, Pilloni G, Kleindienst S, Kruger M, Knittel K, Grundger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552CrossRefGoogle Scholar
  86. Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107CrossRefPubMedGoogle Scholar
  87. Weissenfels WD, Klewer H-J, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696CrossRefPubMedGoogle Scholar
  88. Went FW (1960) Organic matter in the atmosphere, and its possible relation to petroleum formation. Proc Natl Acad Sci U S A 46:212–221CrossRefPubMedPubMedCentralGoogle Scholar
  89. Westbrook SJ, Rayner JL, Davis GB, Clement TP, Bjerg PL, Fisher SJ (2005) Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. Anglais 302:15Google Scholar
  90. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 1997–2021CrossRefGoogle Scholar
  91. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348CrossRefPubMedGoogle Scholar
  92. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785CrossRefPubMedGoogle Scholar
  93. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148CrossRefPubMedGoogle Scholar
  94. Yan B, Passow U, Chanton JP, Nöthig E-M, Asper V, Sweet J et al (2016) Sustained deposition of contaminants from the Deepwater Horizon spill. Proc Natl Acad Sci USA 113:E3332–E3340Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Applied GeosciencesEberhard Karls University, TübingenTübingenGermany
  2. 2.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations