Skip to main content

Helium Isotopes

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Stable isotopic ratio of helium (3He/4He).

Variations in He Isotope Ratios

Helium has two stable isotopes: 3He and 4He. Both isotopes were produced by nucleo-synthesis in the very early universe about 100 s after the Big Bang, possibly because of the fusion of deuterium (D) as shown below.

D + D âž” 3He + n.

D + D ➔ 4He + γ.

T + D âž” 4He + n.

3He + n ➔ 4He + γ.

3He + D âž” 4He + p.

In those expressions, n, γ, T, and p, respectively, denote neutron, γ ray, tritium (3H), and proton. The helium isotopic ratio (3He/4He) has been calculated approximately 8 × 10−5 (Burles et al. 1999) because the 4He nucleus is much more stable than that of 3He. The ratio has evolved through stellar processes. Both 3He and 4He are produced by a proton–proton chain reaction occurring deep in stars like the Sun with high pressure and temperature as follows.

p + p ➔ D + β+ + ν.

D + p ➔ 3He + γ.

3He + 3He âž” 4He + 2 p.

Therein, β+ and ν, respectively, denote positron and neutrino. The best estimate of the 3He/...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich LT, Nier AO (1948) The occurrence of He3 in natural sources of helium. Phys Rev 74:1590–1594

    Article  Google Scholar 

  • Alvarez LW, Cornog R (1939) He-3 in helium. Phys Rev 56:379–379

    Article  Google Scholar 

  • Amari S, Ozima M (1985) Search for the origin of exotic helium in deep-sea sediments. Nature 317:520–522

    Article  Google Scholar 

  • Burles S, Nollett KM, and Turner MS (1999) Big-Bang nucleosynthesis: linking inner space and outer space. arXiv astro-ph/9903300

    Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220

    Article  Google Scholar 

  • Geiss J, Gloeckler G (1988) Abundances of deuterium and helium-3 in the protosolar cloud. Space Sci Rev 84:239–250

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts; characterization of mantle source reservoirs. In: Porcelli D, Ballentine C, Wieler R (eds) MSA special volume: Noble gases in geochemistry and cosmochemistry, vol 47. Mineralogical Society of America, Washington, DC, pp 247–317

    Google Scholar 

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases in subduction zones and volatile recycling. In: Porcelli D, Ballentine C, Wieler R (eds) MSA Special Volume: Noble Gases in Geochemistry and Cosmochemistry. 47, pp 319–362

    Google Scholar 

  • Kurz M (1986) Cosmogenic helium in a terrestrial igneous rock. Nature 320:435–439

    Article  Google Scholar 

  • Mabry JC, Lan T, Boucher C, Burnard PG, Brennwald MS, Langenfelds R, Marty B (2015) No evidence for change of the atmospheric helium isotope composition since 1978 from re-analysis of the Cape Grim Air Archive. Earth Planet Sci Lett 428:134–138

    Article  Google Scholar 

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier. 273 pp

    Google Scholar 

  • Mamyrin BA, Tolstikhin IN, Anufriyev GS, Kamenskiy IL (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geokhimiya 1969:595–602

    Google Scholar 

  • Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin IN (1970) Determination of the isotopic composition of atmospheric helium. Geochem Int 7:498–505

    Google Scholar 

  • Morrison P, Pine J (1955) Radiogenic origin of the helium isotopes in rock. Ann N Y Acad Sci 62:71–92

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry. Cambridge University Press, Cambridge/New York. 286 pp

    Google Scholar 

  • Sano Y, Fischer TP (2013) The analysis and interpretation of Noble gases in modern hydrothermal systems. In: Burnard P (ed) The Noble gases as geochemical tracers, Advances in Isotope Geochemistry. Springer, Heidelberg/New York, pp 249–317

    Chapter  Google Scholar 

  • Sano Y, Wakita H, Makide Y, Tominaga T (1989) A 10-year decrease in the atmospheric helium isotope ratio possibly caused by human activity. Geophys Res Lett 16:1371–1374

    Article  Google Scholar 

  • Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353–362

    Article  Google Scholar 

  • Wieler R, Anders E, Baur H, Lewis RS, Signer P (1992) Characterization of Q-gases and other noble gas components in the Murchison meteorite. Geochim Cosmochim Acta 56:2907–2921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sano, Y. (2018). Helium Isotopes. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_205

Download citation

Publish with us

Policies and ethics