Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Biological Pump

  • Sarah L. C. GieringEmail author
  • Matthew P. Humphreys
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_154

Definition

The biological pump is the collection of marine biogeochemical processes that convert dissolved inorganic matter in the surface ocean into biomass and transport this to the ocean interior, where the biomass is returned to its original dissolved inorganic forms.

Introduction

The concentrations of elements vary throughout the global ocean. Concentrations of dissolved inorganic carbon (DIC – the sum of the aqueous CO2 (<1%), bicarbonate (~90%), and carbonate ion (~10%) concentrations) and nutrients are greater in deep waters relative to the near-surface, and in older water masses relative to younger ones. Some trace metals, on the other hand, have higher concentrations in surface waters. The biological pump is an important process that contributes to these gradients.

The biological pump begins in the sunlit upper ocean, called the euphotic zone. Here, photosynthesizing organisms convert DIC and nutrients into biomass, in the form of particular organic matter (e.g.,...

This is a preview of subscription content, log in to check access.

References

  1. Boyd PW, Ellwood MJ, Tagliabue A, Twining BS (2017) Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat Geosci 10:167–173.  https://doi.org/10.1038/ngeo2876CrossRefGoogle Scholar
  2. Brierley AS (2014) Diel vertical migration. Curr Biol 24:R1074–R1076.  https://doi.org/10.1016/j.cub.2014.08.054CrossRefGoogle Scholar
  3. Buesseler KO, Boyd PW (2009) Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol Oceanogr 54:1210–1232.  https://doi.org/10.4319/lo.2009.54.4.1210CrossRefGoogle Scholar
  4. Burd AB, Jackson GA (2009) Particle aggregation. Ann Rev Mar Sci 1:65–90.  https://doi.org/10.1146/annurev.marine.010908.163904CrossRefGoogle Scholar
  5. Carlson CA, Hansell DA, Nelson NB et al (2010) Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep Sea Res II Top Stud Oceanogr 57:1433–1445.  https://doi.org/10.1016/j.dsr2.2010.02.013CrossRefGoogle Scholar
  6. Dall’Olmo G, Mork KA (2014) Carbon export by small particles in the Norwegian Sea. Geophys Res Lett 41:2921–2927.  https://doi.org/10.1002/2014GL059244CrossRefGoogle Scholar
  7. De La Rocha CL (2007) The biological pump. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 1–29Google Scholar
  8. Fontela M, García-Ibáñez MI, Hansell DA et al (2016) Dissolved organic carbon in the North Atlantic Meridional overturning circulation. Sci Rep 6:26931.  https://doi.org/10.1038/srep26931CrossRefGoogle Scholar
  9. Giering SLC, Sanders R, Lampitt RS et al (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483.  https://doi.org/10.1038/nature13123CrossRefGoogle Scholar
  10. Henson SA, Sanders R, Madsen E et al (2011) A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys Res Lett 38:L04606.  https://doi.org/10.1029/2011GL046735CrossRefGoogle Scholar
  11. Henson SA, Sanders R, Madsen E (2012) Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob Biogeochem Cycles 26:1–14.  https://doi.org/10.1029/2011GB004099CrossRefGoogle Scholar
  12. Lampitt RS, Achterberg EP, Anderson TR et al (2008) Ocean fertilization: a potential means of geoengineering? Philos Trans Ser A 366:3919–3945.  https://doi.org/10.1098/rsta.2008.0139CrossRefGoogle Scholar
  13. Lee C, Wakeham S, Arnosti C (2004) Particulate organic matter in the sea: the composition conundrum. AMBIO J Hum Environ 33:565–575.  https://doi.org/10.1579/0044-7447-33.8.565CrossRefGoogle Scholar
  14. Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34:267–285.  https://doi.org/10.1016/0198-0149(87)90086-0CrossRefGoogle Scholar
  15. Martin P, van der Loeff MR, Cassar N et al (2013) Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Glob Biogeochem Cycles 27:871–881.  https://doi.org/10.1002/gbc.20077CrossRefGoogle Scholar
  16. Parekh P, Dutkiewicz S, Follows MJ, Ito T (2006) Atmospheric carbon dioxide in a less dusty world. Geophys Res Lett 33:L03610.  https://doi.org/10.1029/2005GL025098CrossRefGoogle Scholar
  17. Siegel DA, Buesseler KO, Doney SC et al (2014) Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob Biogeochem Cycles 28:181–196.  https://doi.org/10.1002/2013GB004743CrossRefGoogle Scholar
  18. Smetacek V, Klaas C, Strass VH et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319.  https://doi.org/10.1038/nature11229CrossRefGoogle Scholar
  19. Steinberg DK, Landry MR (2017) Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci 9:413–444.  https://doi.org/10.1146/annurev-marine-010814-015924CrossRefGoogle Scholar
  20. Strong A, Chisholm S, Miller C, Cullen J (2009) Ocean fertilization: time to move on. Nature 461:347–348.  https://doi.org/10.1038/461347aCrossRefGoogle Scholar
  21. Wolf-Gladrow DA, Zeebe RE, Klaas C et al (2007) Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar Chem 106:287–300.  https://doi.org/10.1016/j.marchem.2007.01.006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean Biogeochemistry and EcosystemsNational Oceanography CentreSouthamptonUK
  2. 2.Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK