Encyclopedia of Geochemistry

2018 Edition
| Editors: William M. White

Chemical Weathering

Reference work entry
DOI: https://doi.org/10.1007/978-3-319-39312-4_143


Chemical weathering may be defined as the spontaneous and irreversible thermodynamic process that causes degradation of the mineral phases under the prevailing environmental conditions at the surface of the Earth. If one must differentiate the weathering in the continental and marine environments, chemical weathering is usually considered to be the solid/solution interactive process occurring in contact with the atmosphere. By extension, in the language of the specialists of the critical zone, chemical weathering may be defined as that set of processes which alter a rock into a layer of chemically and physically transformed superficial material (i.e., regolith) which is susceptible to evolve (soil or karst) with time following biogeochemical processes.


While this process of chemical modification can be easily formalized by writing on paper, for example, the chemical reaction of dissolving a mineral (1), the reality is much more complex because it actually...
This is a preview of subscription content, log in to check access.


  1. Beaulieu E, Goddéris Y, Labat D, Roelandt C, Calmels D, Gaillardet J (2011) Modeling of water-rock interaction in the MacKenzie basin: competition between sulfuric and carbonic acids. Chem Geol 289:114–123CrossRefGoogle Scholar
  2. Berner RA (1995) Chemical weathering and its effect on atmospheric CO2 and climate. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals, Reviews in mineralogy, vol 31. Mineralogical Society of America, Washington, DC, pp 565–583Google Scholar
  3. Bouchez J, Gaillardet J, Lupker M, Louvat P, France-Lanord C, Maurice L, Armijos E, Moquet J-S (2012) Floodplains of large rivers: weathering reactors or simple solos? Chem Geol 332(333):166–184CrossRefGoogle Scholar
  4. Chardon D, Chevilotte V, Beauvais A, Grandin G, Boulangé B (2006) Planation, bauxites and epeirogeny: one or two paleosurfaces on the West African margin? Geomoph 82:273–282CrossRefGoogle Scholar
  5. Chave J (1999) Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecol Model 124:233–254CrossRefGoogle Scholar
  6. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731CrossRefGoogle Scholar
  7. Drever JI Vance GF (1994) Role of soil organic acids in mineral weathering process. In: Pittman ED, Lewan MD (eds) Organic acids in geological processes, Springer-Verlag, Berlin, 482ppCrossRefGoogle Scholar
  8. Duffy C, Shi Y, Davis K, Slingerland R, Li L, Sullivan PL, Goddéris Y, Brantley SL (2014) Designing a suite of models to explore critical zone function. Proc Earth Planet Sci 10:7–15CrossRefGoogle Scholar
  9. Ferrier KL, Kirchner JW, Riebe CS, Finkel RC (2010) Mineral-specific chemical weathering rates over millennial timescales: measurements at Rio Icacos, Puerto Rico. Chem Geol 277:101–114CrossRefGoogle Scholar
  10. Fraysse F, Pokrovsky O, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206CrossRefGoogle Scholar
  11. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  12. Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. Am Chem Soc Adv Chem Ser 67:222–242CrossRefGoogle Scholar
  13. Goddéris Y, Donnadieu Y, Le Hir G, Lefebvre V, Nardin E (2014) The role of paleogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth Sci Rev 128:122–138CrossRefGoogle Scholar
  14. Goldsmith ST, Carey AE, Johnson BM, Welch SA, Berry Lyons W, McDowell WH, Pigott JS (2010) Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, lesser Antilles. Geochim Cosmochim Acta 74:85–103CrossRefGoogle Scholar
  15. Hellmann R, Wirth R, Daval D, Barnes JP, Penisson JM, Tisserand D, Epicier T, Florin B, Hervig RL (2012) Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces. Chem Geol 294:203–216CrossRefGoogle Scholar
  16. Maher K (2010) The dependence of chemical weathering rates on fluid residence time. Earth Plan Sci Lett 294:101–110CrossRefGoogle Scholar
  17. Maher K, Chamberlain CP (2014) Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 342:1502–1504CrossRefGoogle Scholar
  18. Maher K, Steefel CI, DePaolo DJ, Viani BE (2006) The mineral dissolution rate conundrum: insights from reactive transport modelling of U isotopes and pore fluid chemistry in marine sediments. Geochim Cosmochim Acta 70:337–363CrossRefGoogle Scholar
  19. Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean: a global synthesis. Cambridge, Cambridge University Press, 392ppGoogle Scholar
  20. Moquet J-S, Crave A, Viers J, Seyler P, Armijos E, Bourrel L, Chavarri E, Lagane C, Casimiro WSL, Pombosa R, Noriega L, Vera A, Guyot J-L (2011) Chemical weathering and atmospheric soil/CO2 uptake in the Andean and foreland Amazon basins. Chem Geol 287:1–26CrossRefGoogle Scholar
  21. Oelkers EH, Schott J, Devidal JL (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim Cosmochim Acta 58:2011–2024CrossRefGoogle Scholar
  22. Oelkers EH, Golubev SV, Chairat C, Pokrovsky OS, Schott J (2009) The surface chemistry of multi-oxide silicates. Geochim Cosmochim Acta 73:4617–4634CrossRefGoogle Scholar
  23. Oliva P, Viers J, Dupré B (2003) Chemical weathering in granitic environments. Chem Geol 202:225–256CrossRefGoogle Scholar
  24. Perrin A-S, Probst A, Probst J-L (2008) Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales. Geochim Cosmochim Acta 72:3105–3123CrossRefGoogle Scholar
  25. Rasmussen C, Brantley S, deB Richter D, Blum A, Dixon J, White AF (2011) Strong climate and tectonic control on plagioclase weathering in granitic terrain. Earth Plan Sci Lett 301:521–530CrossRefGoogle Scholar
  26. Ruiz-Agudo E, Putnis CV, Rodriguez-Navarro C, Putnis A (2012) Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology 40:947–950CrossRefGoogle Scholar
  27. Schopka HH, Derry LA (2012) Chemical weathering fluxes from volcanic islands and the importance of groundwater: the Hawaiian example. Earth Plan Sci Lett 339/340:67–78CrossRefGoogle Scholar
  28. Schopka HH, Derry LA, Arcilla CA (2011) Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochim Cosmochim Acta 75:978–1002CrossRefGoogle Scholar
  29. Schott J, Pokrovsky O, Spalla O, Devreux F, Gloter A, Mielczarski A (2012) Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite. Geochim Cosmochim Acta 98:259–281CrossRefGoogle Scholar
  30. Viers J, Barroux G, Pinelli M, Seyler P, Oliva P, Dupré B, Boaventura G (2005) The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil). Sci Total Environ 339:219–232CrossRefGoogle Scholar
  31. Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782CrossRefGoogle Scholar
  32. West AJ (2012) Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40:811–814CrossRefGoogle Scholar
  33. White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals: an overview. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals, Reviews in mineralogy, vol 31. Mineralogical Society of America, Washington, DC, pp 1–22Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS/IRDPaul Sabatier UniversityToulouseFrance