Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Solubility

  • Jean-François BoilyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_72-1

Definition

Solubility is the maximal quantity that a substance can dissolve as a solute in a host solvent, forming a saturated solution. Any additional quantity occurs as a precipitate and results in a suspension of particles. Solubility is expressed in terms of concentration units for a given temperature and pressure.

Introduction

Solubility is an essential concept needed in many areas of geochemistry to describe the ability of gas es (g), liquid s (l), or solid s (s) to dissolve in substances. The resulting solutions are homogeneous mixtures of two or more substances, where the solvent is typically, although not necessarily, one of high mole fraction and the solute of lower mole fractions. Examples include the dissolution of sodium chloride (halite) in water, or of water in magmas. In contrast to miscibility where substances can mix in all proportions (e.g., water and ethanol), solubility pertains to the maximal quantity that can be accomodated by the host solvent. This quantity is...

Keywords

Hydration Shell Potassium Hydrogen Phthalate Transport Agent Solubility Constant High Mole Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Adamczyk K, Premont-Schwarz M, Pines D, Pines E, Nibbering ETJ (2009) Real-time observation of carbonic acid formation in aqueous solution. Science 326(5960):1690–1694. doi:10.1126/science.1180060CrossRefGoogle Scholar
  2. Benson BB, Krause J Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632CrossRefGoogle Scholar
  3. Biot BC, Henry O, Barreswil R, Pohl JJ (1852) Notizen. J Prakt Chem 56(1):53–64. doi:10.1002/prac.18520560106CrossRefGoogle Scholar
  4. Diamond LW, Akinfiev NN (2003) Solubility of CO2 in water from −1.5 to 100 degrees C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib 208(1–2):265–290. doi:10.1016/s0378-3812(03)00041-4CrossRefGoogle Scholar
  5. Dolejs D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10(1–2):20–40. doi:10.1111/j.1468-8123.2010.00282.xGoogle Scholar
  6. Driesner T, Seward TM, Tironi IG (1998) Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions. Geochim Cosmochim Acta 62(18):3095–3107. doi:10.1016/s0016-7037(98)00207-5CrossRefGoogle Scholar
  7. Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural-waters – the NA-K-MG-CA-H-CL-SO4-O-HCO3-CO3-CO2-H2O system to high ionic strengths at 25-degrees-C. Geochim Cosmochim Acta 48(4):723–751. doi:10.1016/0016-7037(84)90098-xCrossRefGoogle Scholar
  8. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures.4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600-degrees-C and 5 KB. Am J Sci 281(10):1249–1516CrossRefGoogle Scholar
  9. Hurtig NC, Williams-Jones AE (2014) An experimental study of the transport of gold through hydration of AuCl in aqueous vapour and vapour-like fluids. Geochim Cosmochim Acta 127:305–325. doi:10.1016/j.gca.2013.11.029CrossRefGoogle Scholar
  10. Kumar PP, Kalinichev AG, Kirkpatrick RJ (2007) Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations. J Chem Phys 126(20). doi:10.1063/1.2741552Google Scholar
  11. Lam RK, England AH, Smith JW, Rizzuto AM, Shih O, Prendergast D, Saykally RJ (2015) The hydration structure of dissolved carbon dioxide from X-ray absorption spectroscopy. Chem Phys Lett 633:214–217. doi:10.1016/j.cplett.2015.05.039CrossRefGoogle Scholar
  12. Lemke KH, Seward TM (2008) Solvation processes in steam: Ab initio calculation of ion-solvent structures and clustering equilibria. Geochim Cosmochim Acta 72:3293–3310. doi:10.1016/j.gca.2008.02.024Google Scholar
  13. Marshall WL, Franck EU (1981) Ion product of water substance, O-degrees-C-1000-degrees-C, 1-10,000 bars – new International formulation and its background. J Phys Chem Ref Data 10(2):295–304CrossRefGoogle Scholar
  14. Migdisov AA, Williams-Jones AE, Suleimenov OM (1999) Solubility of chlorargyrite (AgCl) in water vapor at elevated temperatures and pressures. Geochim Cosmochim Acta 63(22):3817–3827. doi:10.1016/S0016-7037(99)00213-6CrossRefGoogle Scholar
  15. Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319(5870):1635–1638. doi:10.1126/science.1148614CrossRefGoogle Scholar
  16. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in visual basic for excel. Comput Geosci 28(5):597–604. doi:10.1016/S0098-3004(01)00081-4CrossRefGoogle Scholar
  17. Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G (2013) Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci U S A 110(17):6646–6650. doi:10.1073/pnas.1221581110CrossRefGoogle Scholar
  18. Sverjensky DA, Harrison B, Azzolini D (2014) Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 degrees C. Geochim Cosmochim Acta 129:125–145. doi:10.1016/j.gca.2013.12.019CrossRefGoogle Scholar
  19. Zhang Y, Xu Z, Zhu M, Wang H (2007) Silicate melt properties and volcanic eruptions. Rev Geophys 45(4). doi:10.1029/2006RG000216Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ChemistryUmeå UniversityUmeåSweden