Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Ocean Biochemical Cycling and Trace Elements

  • Hein J. W. de Baar
  • Steven M. A. C. van Heuven
  • Rob MiddagEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_356-1


Ocean biochemical cycling refers to the distribution of nutrients and bio-essential elements at low concentration that is controlled by their uptake by phytoplankton in surface waters, sinking and remineralization of organic remains in deeper waters, and subsequent redistribution by thermohaline circulation.


Dissolved inorganic carbon (C as DIC) varies around ~2 millimoles [mM = 10−3 M] in seawater and is pivotal for life in the sea. Much less abundant are the nutrients nitrate and phosphate that occur in the micromole [μM = 10−6 M] range and are essential for each living organism. Also essential for life are several trace nutrient elements , notably Fe and Zn, that occur in the nanomolar [nM = 10−9 M] range or even lower such as Co in the picomolar [pM = 10−12 M] range. Several other trace elements also occur in the nanomolar [nM] to picomolar [pM] range. Finally a few ultratrace elements occur in the femtomolar [fM = 10−15 M] range in seawater.


This is a preview of subscription content, log in to check access.


  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous–tertiary extinction. Science 208(4448):1095–1108CrossRefGoogle Scholar
  2. Anbar AD, Wasserburg GJ, Papanastassiou DA, Anderson PS (1996) Iridium in natural waters. Science 273:1524–1528CrossRefGoogle Scholar
  3. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles 8:65–80CrossRefGoogle Scholar
  4. Baars O, Abouchami W, Galer SJ, Boye M, Croot PL (2014) Dissolved cadmium in the Southern Ocean: distribution, speciation and relation to phosphate. Limnol Oceanogr 58:385–399CrossRefGoogle Scholar
  5. Balistrieri L, Brewer PG, Murray JW (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res 28A:101–121CrossRefGoogle Scholar
  6. Bown J, Laan P, Ossebaar S, Bakker K, Rozema P, De Baar HJW (2016) Bioactive trace metal timeseries during Austral summer in Ryder Bay, Western Antarctic Peninsula. Deep-Sea Res II.  http://dx.doi.org/10.1016/j.dsr2.2016.07.004i
  7. Boyle EA, Sclater FR, Edmond JM (1976) On the marine geochemistry of cadmium. Nature 263:42–44CrossRefGoogle Scholar
  8. Boyle EA, Lee J-M, Echegoyen Y, Noble A, Moos S, Carrasco G, Zhao N, Kayser R, Zhang J, Gamo T, Obata H, Norisuye K (2014) Anthropogenic lead emissions in the ocean: the evolving global experiment. Oceanography 27(1):69–75.  http://dx.doi.org/10.5670/oceanog.2014.10 CrossRefGoogle Scholar
  9. Broecker WS, Peng T-H (1982) Tracers in the sea. Eldigio Press, New York. 690pGoogle Scholar
  10. Bruland KW (1980) Oceanographic distributions of Cd, Zn, Cu, and Ni in the North Pacific. Earth Planet Sci Lett 47:176–198CrossRefGoogle Scholar
  11. Bruland KW, Lohan MC (2003) Controls of trace metals in seawater. In: Elderfield H (ed) The oceans and marine geochemistry. Treatise on geochemistry, vol 6. Elsevier, Amsterdam. pp 23–47. ISBN: 0-08-044341-9Google Scholar
  12. Bruland KW, Donat JR, Hutchins DT (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577CrossRefGoogle Scholar
  13. Bruland KW, Middag R, Lohan MC (2014) Controls of trace metals in seawater. Chapter 8.2. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 19–51CrossRefGoogle Scholar
  14. Bryson B (2003) Getting the lead out. Chapter 10. In: A short history of nearly everything. Doubleday (Publishing), Doubleday, London. pp 193–205Google Scholar
  15. Buma AGJ, de Baar HJW, Nolting RF, Van Bennekom AJ (1991) Metal enrichment experiments in the Weddell-Scotia Seas: effects of Fe and Mn on various plankton communities. Limnol Oceanogr 36(8):1865–187lCrossRefGoogle Scholar
  16. Butler A (1990) The coordination and redox chemistry of vanadium in aqueous solution. In: Chasteen ND (ed) Vanadium in biological systems: physiology and biochemistry. Springer, The Netherlands. pp 25–49Google Scholar
  17. Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181CrossRefGoogle Scholar
  18. Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and the oceans. Geochim Cosmochim Acta 128:195–211CrossRefGoogle Scholar
  19. Collier RW (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature 309:441–444CrossRefGoogle Scholar
  20. Collier RW (1985) Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354CrossRefGoogle Scholar
  21. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R (2013) Atmospheric oxygenation three billion years ago. Nature 501(7468):535–538CrossRefGoogle Scholar
  22. De Baar HJW (1994) Von Liebig’s law of the minimum and plankton ecology (1899–1991). Prog Oceanogr 33:347–386CrossRefGoogle Scholar
  23. De Baar HJW, De Jong JTM (2001) Distributions, sources and sinks of iron in seawater. Review chapter 5. In: Turner D, Hunter KA (eds) Biogeochemistry of iron in seawater. IUPAC book series on analytical and physical chemistry of environmental systems, vol 7. John Wiley & Sons, Chichester. pp 123–253Google Scholar
  24. De Baar HJW, La Roche J (2003) Metals in the oceans; evolution, biology and global change. In: Lamy F, Wefer G (eds) Marine scientific frontiers for Europe. Springer, Berlin, pp 79–105CrossRefGoogle Scholar
  25. De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122CrossRefGoogle Scholar
  26. De Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for phytoplankton spring blooms and CO2 drawdown in the Southern Ocean. Nature 373:412–415CrossRefGoogle Scholar
  27. De Baar HJW, Van Leeuwe MA, Scharek R, Goeyens L, Bakker KMJ, Fritsch P (1997) Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A.C. Redfield) of the Antarctic Ocean. Deep-Sea Res II 44(1/2):229–260CrossRefGoogle Scholar
  28. De Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barber RT, Brzezinski MA, Buesseler KO, Boyé M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock WT, Laan P, Lancelot C, Law C, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, Van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW, Waite A, Wong CS (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. In: Orr JC, Pantoja S, Pörtner H-O (eds) The ocean in a high CO2 world. Special Issue of J Geophys Res (Oceans) 110:C09S16. doi: 10.1029/2004JC002601. pp 1–24
  29. De Baar HJW, Gerringa LJA, Laan P, Timmermans KR (2008) Efficiency of carbon removal per added Fe in ocean fertilization. Mar Ecol Prog Ser 364:269–282CrossRefGoogle Scholar
  30. Fanning KA (1992) Nutrient provinces in the sea: concentration ratios, reaction ratios and ideal covariation. J Geophys Res 97:5693–5712CrossRefGoogle Scholar
  31. Flegal AR, Patterson CC (1983) Vertical concentration profiles of lead in the central Pacific at 15 °N and 20 °S. Earth Planet Sci Lett 64:19–32CrossRefGoogle Scholar
  32. Frausto da Silva JJR, Williams RJP (1994) The biological chemistry of the elements. Clarendon Press, OxfordGoogle Scholar
  33. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  34. Gerringa LJA, Laan P, Van Dijken GL, Van Haren H, De Baar HJW, Arrigo KR, Alderkamp AC (2015) Sources of iron in the Ross Sea Polynya in early summer. Mar Chem 177(Part 3):447–459.  dx.doi.org/10.1016/j.marchem.2015.06.002 CrossRefGoogle Scholar
  35. Gledhill M, Buck KN (2012). The organic complexation of iron in the marine environment, a review. Front Microbio 3: article 69. doi:  10.3389/fmicb.2012.00069
  36. Gledhill M, Van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54CrossRefGoogle Scholar
  37. Hawco NJ, Ohnemus DC, Resing JA, Twining BS, Saito MA (2016) A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific. Biogeosciences 13:5697–5717. doi:10.5194/bg-13-5697-2016. www.biogeosciences.net/13/5697/2016/ CrossRefGoogle Scholar
  38. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton. 582pGoogle Scholar
  39. Jickells TD and Spokes LJ (2001) Atmospheric iron inputs to the oceans. Review chapter 5. In: Turner D, Hunter KA (eds) Biogeochemistry of Iron in Seawater. IUPAC book series on analytical and physical chemistry of environmental systems, vol 7. pp 85–121Google Scholar
  40. Klunder MB, Laan P, Middag R, De Baar HJW, Van Ooijen JC (2011) Dissolved iron in the Southern Ocean (Atlantic sector). Deep-Sea Res II Top Stud Oceanogr 58(25):2678–2694CrossRefGoogle Scholar
  41. Klunder MB, Laan P, Middag R, De Baar HJW, Bakker K (2012a) Dissolved iron in the Arctic Ocean: important role of hydrothermal sources, shelf input and scavenging removal. J Geophys Res 117: C04014, doi: 10.1029/2011JC007135
  42. Klunder MB, Bauch D, Laan P, De Baar HJW, Van Heuven SMAC, Ober S (2012b) Dissolved Fe in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J Geophys Res 117:C01027Google Scholar
  43. Klunder MB, Laan P, De Baar HJW, Middag R, Neven I, Van Ooijen JC (2014) Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake. Biogeosciences 11(3):651–669CrossRefGoogle Scholar
  44. La Roche J, Breitbarth E (2005) Importance of the diazotrophs as a source of new nitrogen in the ocean. J Sea Res 53:67–91CrossRefGoogle Scholar
  45. Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Acta 51:29–43CrossRefGoogle Scholar
  46. Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci 97:4627–4631CrossRefGoogle Scholar
  47. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42–42CrossRefGoogle Scholar
  48. Lewis BL, Landing WM (1991) The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res II 38:773–803CrossRefGoogle Scholar
  49. Lovelock J (1979) Gaia: a new look at life on earth. Oxford University Press, Oxford, New York. ISBN 0-19-286218-9Google Scholar
  50. Malakoff D (2014) Chemical atlas shows where seas are tainted—and where they can bloom. Science 343:1070CrossRefGoogle Scholar
  51. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  52. Martin JH, Knauer GA (1985) VERTEX: manganese transport through oxygen minima. Earth Planet Sci Lett 67:35–47CrossRefGoogle Scholar
  53. Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res A Oceanograph Res Pap 36:649–680CrossRefGoogle Scholar
  54. Matsumoto K (2007) Radiocarbon-based circulation age of the world oceans. J Geophys Res 112:C09004. doi: 10.1029/2007JC004095. 2007Google Scholar
  55. Michibata H, Sakurai H (1990) Vanadium in ascidians. In: Chasteen ND (ed) Vanadium in biological systems: physiology and biochemistry. Springer, Netherlands, pp 153–171CrossRefGoogle Scholar
  56. Middag R, De Baar HJW, Laan P, Klunder MB (2011a) Fluvial and hydrothermal input of manganese into the Arctic Ocean. Geochim Cosmochim Acta 75(9):2393–2408CrossRefGoogle Scholar
  57. Middag R, De Baar HJW, Laan P, Cai PH, Van Ooijen JC (2011b) Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Res II 58:2661–2677CrossRefGoogle Scholar
  58. Middag R, Van Slooten C, De Baar HJW, Laan P (2011c) Dissolved aluminium in the Southern Ocean. Deep-Sea Res II 58:2647–2660CrossRefGoogle Scholar
  59. Middag R, De Baar HJW, Laan P, Huhn O (2012) The effects of continental margins and water mass circulation on the distribution of dissolved aluminium and manganese in Drake Passage. J Geophys Res Oceans 117:C01019CrossRefGoogle Scholar
  60. Middag R, De Baar HJW, Klunder MB, Laan P (2013) Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation. Limnol Oceanogr 58(1):287–300.  dx.doi.org/10.4319/lo.2013.58.1.0287 CrossRefGoogle Scholar
  61. Middag R, Van Hulten MMP, Van Aken HM, Rijkenberg MJA, Gerringa LJA, Laan P, De Baar HJW (2015a) Dissolved aluminium in the ocean conveyor of the West Atlantic Ocean: effects of the biological cycle, scavenging, sediment resuspension and hydrography. Mar Chem 177(Part 1):69–86. doi: 10.1016/j.marchem.2015.02.015 CrossRefGoogle Scholar
  62. Middag R, Seferian R, Conway TM, John SG, Bruland KW, De Baar HJW (2015b) Intercomparison of dissolved trace elements at the Bermuda Atlantic time series station. Mar Chem 177(Part 3):476–489. 10.1016/j.marchem.2015.06.014CrossRefGoogle Scholar
  63. Millero FJ, Yao W, Aicher J (1995) The speciation of Fe(II) and Fe(III) in natural waters. Mar Chem 50:21–39CrossRefGoogle Scholar
  64. Nishioka J, Takeda S, Wong CS, Johnson WK (2001) Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. Mar Chem 74 (2001) 157–179Google Scholar
  65. Nishioka J, Takeda S, de Baar HJW, Laan P, Croot PL, Boye M, Timmermans KR (2005) Change in the concentrations of iron in different size fractions during an iron fertilization experiment in the Southern Ocean. EisenEx Mar Chem 95:51–63CrossRefGoogle Scholar
  66. Noble AE, Lamborg CH, Ohnemus DC, Lam PJ, Goepfert TJ, Measures CI, Frame CH, Casciotti KL, DiTullio GR, Jennings J, Saito MA (2012) Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean. Limnol Oceanogr 57:989–1010CrossRefGoogle Scholar
  67. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–222Google Scholar
  68. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. 26–77. M. N. Hill, others, The sea, v. 2. Interscience: New YorkGoogle Scholar
  69. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, Tagliabue A (2015) Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–203. doi: 10.1038/nature14577 CrossRefGoogle Scholar
  70. Reynolds, CS (2006) The ecology of phytoplankton. Cambridge University Press, p 172. (book series ECB Ecology Biodiversity and Conservation)Google Scholar
  71. Rijkenberg MJA, Gerringa LJA, Neale PJ, Timmermans KR, Buma AGJ, De Baar HJW (2004) UVA variability overrules UVB ozone depletion effects on the photoreduction of iron in the Southern Ocean. Geophys Res Lett 31:L24310. doi: 10.1029/2004GL020829 CrossRefGoogle Scholar
  72. Rijkenberg MJA, Fischer AC, Kroon JJ, Gerringa LJA, Timmermans KR, Wolterbeek HT, De Baar HJW (2005) The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar Chem 93(2–4):119–129CrossRefGoogle Scholar
  73. Rijkenberg MJA, Gerringa LJA, Carolus VE, Velzeboer I, De Baar HJW (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater Geochim. Cosmochim Acta 70:2790–2805CrossRefGoogle Scholar
  74. Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM, Schoemann V, De Jong JTM, De Baar HJW (2014) The distribution of dissolved iron in the West Atlantic Ocean. PLoS One 9(6):e101323. doi: 10.1371/journal.pone.0101323 CrossRefGoogle Scholar
  75. Rijkenberg MJA, de Baar HJW, Bakker K, Gerringa LJA, Keijzer E, Laan M, Laan P, Middag R, Ober S, Van Ooijen JC, Ossebaar S, Van Weerlee EM, Smit MG (2015) “PRISTINE”, a new high volume sampler for ultraclean sampling of trace metals and isotopes. Mar Chem 177:501–509. doi: 10.1016/j.marchem.2015.07.001 CrossRefGoogle Scholar
  76. Rivero-Calle S, Del Castillo CE, Gnanadesikan A, Dezfuli A, Zaitchik B, Johns DG (2016) Interdecadal Trichodesmium variability in cold North Atlantic waters, global biogeochem. Cycle 30:1620–1638. doi: 10.1002/2015GB005361 CrossRefGoogle Scholar
  77. Saager PM, De Baar HJW, Burkill PH (1989) Manganese and iron in Indian Ocean waters. Geochim Cosmochim Acta 53:2259–2267CrossRefGoogle Scholar
  78. Saito MA, Goepfert TJ, Noble AE, Sedwick PN, DiTullio GR (2010) A seasonal study of dissolved cobalt in the Ross Sea of Antarctica: micronutrient control, absence of observed scavenging, and relationships with Zn, cd, and P. Biogeosciences 7:4059–4082CrossRefGoogle Scholar
  79. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton. xii + 503pGoogle Scholar
  80. Schaule BK, Patterson CC (1981) Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth Planet Sci Lett 54:97–116CrossRefGoogle Scholar
  81. Schaule BK, Patterson CC (1983) Perturbations of the natural lead depth profile in the Sargasso Sea by industrial lead. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum, New York, pp 487–503CrossRefGoogle Scholar
  82. Singh SP, Singh SK, Bhushan R (2011) Behavior of dissolved redox sensitive elements (U, Mo and Re) in the water column of the Bay of Bengal. Mar Chem 126:76–88CrossRefGoogle Scholar
  83. Smetacek V, HJW DB, Bathmann UV, Lochte K, van der Loeff MM R (eds) (1997) Ecology and biogeochemistry of the Antarctic circumpolar current during austral spring: Southern Ocean JGOFS cruise ANT X/6 of RV polarstern. Deep-Sea Res Part II, Top Stud Oceanogr 44(1&2):1–519Google Scholar
  84. Smit J, Hertogen J (1980) An extraterrestrial event at the cretaceous-tertiary boundary. Nature 285:198–200CrossRefGoogle Scholar
  85. Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6(5–6):411–442Google Scholar
  86. Sunda WG, Huntsman SA (1988) Effect of sunlight on redox cycles of manganese in the south western Sargasso Sea. Deep-Sea Res 35:1297–1317CrossRefGoogle Scholar
  87. Sunda WG, Huntsman SA (1990) Diel cycles in microbial manganese oxidation and manganese redox speciation in coastal waters of the Bahama Islands. Limnol Oceanogr 35:325–338CrossRefGoogle Scholar
  88. Sunda WG, Huntsman SA (1994) Photoreduction of manganese oxides in seawater. Mar Chem 46:133–152CrossRefGoogle Scholar
  89. Sunda WG, Huntsman SA, Harvey GR (1983) Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301:234–236CrossRefGoogle Scholar
  90. Tréguer PJ, Rocha CLDL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5:477–501CrossRefGoogle Scholar
  91. Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and 1 atm pressure. Geochim Cosmochim Acta 45:855–881CrossRefGoogle Scholar
  92. Turner D, Hunter KA, De Baar HJW (2001) Introduction, chapter 1. In: Biogeochemistry of iron in seawater, IUPAC Book Series on Analytical and Physical Chemistry of Environmental Systems, Vol. 7, John Wiley & Sons, Chichester. pp 1–8Google Scholar
  93. Twining BS (2003) The accumulation and trophic transfer of trace metals by protozoa. PhD thesis. Stony Brook University, Stony BrookGoogle Scholar
  94. Twining BS, Baines SB (2013) The trace metal composition of marine phytoplankton. Annu Rev Mar Sci. 2013 5:191–215. doi: 10.1146/annurev-marine-121211-172322 CrossRefGoogle Scholar
  95. Van Heuven SMAC, Hoppema M, Huhn O, Slagter H, De Baar HJW (2011) Direct observations of increasing CO2 in the Weddell Gyre along the Prime Meridian during 1973–2008. Deep-Sea Res II 58:2613–2635CrossRefGoogle Scholar
  96. Van Hulten MMP, Sterl A, Middag R, De Baar HJW, Gehlen M, Dutay JC, Tagliabue A (2014) On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences 11:3757–3779. doi: 10.5194/bg-11-3757-2014 CrossRefGoogle Scholar
  97. Van Hulten M, Middag R, Dutay JC, De Baar H, Roy-Barman M, Gehlen M, Tagliabue A, Sterl A (2017) Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences 14:1123–1152. doi: 10.5194/bg-14-1123-2017 CrossRefGoogle Scholar
  98. Vernadsky V (1926) The biosphere. English translation by David B. Langmuir, New York, Copernicus, 1998. ISBN 0-387-98268-X, 192 ppGoogle Scholar
  99. Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2220CrossRefGoogle Scholar
  100. Von Damm KL, Bray AM, Buttermore LG, Oosting SE (1998) The geochemical controls on vent fluids from the lucky strike vent field, mid-Atlantic ridge, earth planet. Sci Lett 160:521–536Google Scholar
  101. Vu HTD, Sohrin Y (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Sci Rep 3:1745. doi: 10.1038/srep01745 CrossRefGoogle Scholar
  102. Wolfe-Simon FD, Grzebyk D, Schofield O, Falkowski PG (2005) The role and evolution of superoxide dismutase in algae. J Phycol 41:453–465CrossRefGoogle Scholar
  103. Wolfe-Simon F, Starovoytov V, Reinfelder JR, Schofield O, Falkowski PG (2006) Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol 142:1701–1709CrossRefGoogle Scholar
  104. Wu J, Roshan S, Chen G (2014) The distribution of dissolved manganese in the tropical–subtropical North Atlantic during US GEOTRACES 2010 and 2011. Mar Chem 166:9–24CrossRefGoogle Scholar
  105. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61CrossRefGoogle Scholar
  106. Zhao Y, Vance D, Abouchami W, De Baar HJW (2014) Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta 125:653–672CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hein J. W. de Baar
    • 1
  • Steven M. A. C. van Heuven
    • 1
  • Rob Middag
    • 1
    Email author
  1. 1.NIOZ Royal Netherlands Institute for Sea ResearchDepartment of Ocean Systems (OCS), and Utrecht UniversityDen Burg, TexelNetherlands