Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White


  • William M. White
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_294-1


As the term implies, geochemistry is a marriage between chemistry and geology, or more broadly geosciences or earth science, and it is arguably a subdiscipline of both. A better explanation of geochemistry is that it is applies chemistry and chemical principles to understanding the Earth and its cosmic environment and to using that understanding to better the human condition. The latter includes not only exploitation of resources but also safeguarding humans and the environment from the consequences of that exploitation.


Geochemistry has grown over the last 50 or 60 years to touch virtually every aspect of earth science. The contributions of geochemistry to this advance have been simply enormous. Much of this progress has come from innovation in analytical techniques and the ability to assess the nature of natural materials with evermore precision and on evermore finer scales. Geochemists have quantified the geologic time scale through analysis of radioactive and...


Solar System Acid Mine Drainage Platinum Group Element Isotope Geochemistry Organic Geochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Albarède F, Goldstein SL, Dautel D (1997) The neodymium isotopic composition of manganese nodules from the Southern and Indian oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation. Geochim Cosmochim Acta 61(6):1277–1291. doi:10.1016/S0016-7037(96)00404-8CrossRefGoogle Scholar
  2. Allègre CJ (1987) Isotope geodynamics. Earth Planet Sci Lett 86(2–4):175–203. doi:10.1016/0012-821X(87)90220-2CrossRefGoogle Scholar
  3. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108. doi:10.1126/science.208.4448.1095CrossRefGoogle Scholar
  4. Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70(23):5653–5664. doi:10.1016/j.gca.2005.11.032CrossRefGoogle Scholar
  5. Bouvier A, Wadhwa M (2010) The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat Geosci 3(9):637–641. doi:10.1038/ngeo941CrossRefGoogle Scholar
  6. Boyle EA, Anderson RF, Cutter GA, Fine R, Jenkins WJ, Saito M (2015) GEOTRACES GA-03 – the U.S. GEOTRACES North Atlantic transect. In: Deep sea research part II: topical studies in oceanography, vol 116. Elsevier, Amsterdam, p 342Google Scholar
  7. Brantley SL, White TS, White A, Sparks D, Richter D, Pregitzer K, Derry L, Chorover J, Chadwick OA, April R, Anderson S, Amundson R (2006) Frontiers in exploration of the critical zone. National Science Foundation, NewarkGoogle Scholar
  8. Briggs DEG, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5):482–490. doi:10.1002/bies.201400010CrossRefGoogle Scholar
  9. Broecker W (2012) The carbon cycle and climate change: memoirs of my 60 years in science. Geochem Perspect 1(2):221–221CrossRefGoogle Scholar
  10. Burkhardt C, Borg LE, Brennecka GA, Shollenberger QR, Dauphas N, Kleine T (2016) A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature 537(7620):394–398. doi:10.1038/nature18956CrossRefGoogle Scholar
  11. Carmichael ISE, Eugster HP (1987) Thermodynamic modeling of geological materials: minerals, fluids and melts. In: Ribbe PH (ed) Reviews in mineralogy, vol 17. Mineralogical Society of America, Washington, DC, p 499Google Scholar
  12. Clayton RN (2002) Self-shielding in the solar nebula. Nature 415:860–861CrossRefGoogle Scholar
  13. Clayton RN, Onuma N, Mayeda TS (1976) A classification of meteorites based on oxygen isotope ratios. Earth Planet Sci Lett 30:10–18CrossRefGoogle Scholar
  14. Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180(3–4):227–236. doi:10.1016/j.precamres.2010.03.008CrossRefGoogle Scholar
  15. Condie KC, Pease V (2008) When did plate tectonics begin on planet Earth? In: GSA special papers, vol 440. Geologic Society of America, Boulder, p 294Google Scholar
  16. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galápagos rift. Science 203(4385):1073–1083. doi:10.1126/science.203.4385.1073CrossRefGoogle Scholar
  17. Craig OE, Shillito L-M, Albarella U, Viner-Daniels S, Chan B, Cleal R, Ixer R, Jay M, Marshall P, Simmons E, Wright E, Pearson MP (2015) Feeding Stonehenge: cuisine and consumption at the late Neolithic site of Durrington Walls. Antiquity 89(347):1096–1109. doi:10.15184/aqy.2015.110CrossRefGoogle Scholar
  18. Ćuk M, Hamilton DP, Lock SJ, Stewart ST (2016) Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature advance online publication. doi:10.1038/nature19846Google Scholar
  19. Curry WB, Oppo DW (2005) Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20(1):PA1017. doi:10.1029/2004PA001021CrossRefGoogle Scholar
  20. Davis RA Jr, Welty TA, Borrego J, Morales AJ, Pendon GJ, Ryan GJ (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Environ Geol 39(10):1107–1116. doi:10.1007/s002549900096CrossRefGoogle Scholar
  21. Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275(1–2):1–16. doi:10.1016/j.epsl.2008.07.012CrossRefGoogle Scholar
  22. Eiler JM, Bergquist B, Bourg I, Cartigny P, Farquhar J, Gagnon A, Guo W, Halevy I, Hofmann A, Larson TE, Levin N, Schauble EA, Stolper D (2014) Frontiers of stable isotope geoscience. Chem Geol 372:119–143. doi:10.1016/j.chemgeo.2014.02.006CrossRefGoogle Scholar
  23. Elkins-Tanton LT (2013) Planetary science: Occam’s origin of the moon. Nat Geosci 6(12):996–998. doi:10.1038/ngeo2026CrossRefGoogle Scholar
  24. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289(5480):756–758. doi:10.1126/science.289.5480.756CrossRefGoogle Scholar
  25. Fyfe W (1981) The environmental crisis: quantifying geosphere interactions. Science 213(4503):105–110CrossRefGoogle Scholar
  26. Gast PW (1960) Limitations on the composition of the upper mantle. J Geophys Res 65:1287–1297CrossRefGoogle Scholar
  27. Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107–145CrossRefGoogle Scholar
  28. Godfrey LV, Zimmermann B, Lee DC, King RL, Vervoort JD, Sherrell RM, Halliday AN (2009) Hafnium and neodymium isotope variations in NE Atlantic seawater. Geochem Geophys Geosyst 10(8):Q08015. doi:10.1029/2009gc002508CrossRefGoogle Scholar
  29. Goldschmidt VM (1923) Geochemische Verteilungsgesetze der Elemente I. Skr utgivne af det Norske Vidensk Akad i Oslo I Matematisk-Naturvidenskapelig Klasse 2:1–17Google Scholar
  30. Goldschmidt VM (1933) Grundlagen der quantitativen Geochemie. Fortschr Mineral Kristall Petrolgr 17:112–156Google Scholar
  31. Hannisdal B, Peters SE (2011) Phanerozoic earth system evolution and marine biodiversity. Science 334(6059):1121–1124. doi:10.1126/science.1210695CrossRefGoogle Scholar
  32. Harper CL, Jacobsen SB (1992) Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360:728–732CrossRefGoogle Scholar
  33. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515. doi:10.1016/0019-1035(75)90070-6CrossRefGoogle Scholar
  34. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc 167(2):229–248. doi:10.1144/0016-76492009-072CrossRefGoogle Scholar
  35. Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations. Geochim Cosmochim Acta 32(8):853–877. doi:10.1016/0016-7037(68)90100-2CrossRefGoogle Scholar
  36. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B 361(1470):903–915. doi:10.1098/rstb.2006.1838CrossRefGoogle Scholar
  37. Imbrie J (1985) A theoretical framework for the Pleistocene ice ages: William Smith lecture. J Geol Soc 142(3):417–432. doi:10.1144/gsjgs.142.3.0417CrossRefGoogle Scholar
  38. Jackson MG (2016) Oceanic Island basalts. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth. Springer International Publishing, Cham, pp 1–5CrossRefGoogle Scholar
  39. Jacobson AD, Wasserburg GJ (2005) Anhydrite and the Sr isotope evolution of groundwater in a carbonate aquifer. Chem Geol 214(3–4):331–350. doi:10.1016/j.chemgeo.2004.10.006CrossRefGoogle Scholar
  40. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796. doi:10.1126/science.1141038CrossRefGoogle Scholar
  41. Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41(1):429–463. doi:10.1146/annurev.astro.41.071601.170049CrossRefGoogle Scholar
  42. Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81(14):2467–2470. doi:10.1029/JB081i014p02467CrossRefGoogle Scholar
  43. Kleber M, Johnson MG (2010) Chapter 3. Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. In: Donald LS (ed) Advances in agronomy, vol 106. Academic, San Diego, pp 77–142Google Scholar
  44. Lalonde K, Mucci A, Ouellet A, Gelinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483(7388):198–200. doi:10.1038/nature10855CrossRefGoogle Scholar
  45. Lee-Thorp JA (2008) ON ISOTOPES AND OLD BONES*. Archaeometry 50(6):925–950. doi:10.1111/j.1475-4754.2008.00441.xCrossRefGoogle Scholar
  46. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315. doi:10.1038/nature13068CrossRefGoogle Scholar
  47. Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486(7401):101–104CrossRefGoogle Scholar
  48. Peters KE, Walters CC, Moldowan JM (2007) The biomarker guide: volume 2, biomarkers and isotopes in petroleum systems and Earth history. Cambridge University Press, CambridgeGoogle Scholar
  49. Pike AWG, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, De Balbín R, González-Sainz C, de las Heras C, Lasheras JA, Montes R, Zilhão J (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336(6087):1409–1413. doi:10.1126/science.1219957CrossRefGoogle Scholar
  50. Plank T (2016) Subduction zone geochemistry. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth. Springer International Publishing, Cham, pp 1–9CrossRefGoogle Scholar
  51. Rizo H, Walker RJ, Carlson RW, Touboul M, Horan MF, Puchtel IS, Boyet M, Rosing MT (2016) Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim Cosmochim Acta 175:319–336. doi:10.1016/j.gca.2015.12.007CrossRefGoogle Scholar
  52. Rosing M, Rose MN, Bridgwater D, Thomsne HS (1996) Earliest part of Earth’s stratigraphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24:43–46CrossRefGoogle Scholar
  53. Rudge JF, Kleine T, Bourdon B (2010) Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat Geosci 3(6):439–443. doi:10.1038/ngeo872CrossRefGoogle Scholar
  54. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56CrossRefGoogle Scholar
  55. Shipp J, Gould IR, Herckes P, Shock EL, Williams LB, Hartnett HE (2013) Organic functional group transformations in water at elevated temperature and pressure: reversibility, reactivity, and mechanisms. Geochim Cosmochim Acta 104:194–209. doi:10.1016/j.gca.2012.11.014CrossRefGoogle Scholar
  56. Staudacher T, Allègre CJ (1982) Terrestrial xenology. Earth Planet Sci Lett 60(3):389–406. doi:10.1016/0012-821X(82)90075-9CrossRefGoogle Scholar
  57. Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark, and the southeastern United States. Geol Soc Am Bull 62(4):399–416. doi:10.1130/0016-7606(1951)62[399:mopato]2.0.co;2CrossRefGoogle Scholar
  58. Vernadsky V (1926) Biosfera. Scientific Chemico-Technical Publishing, LeningradGoogle Scholar
  59. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334(6052):54–57. doi:10.1126/science.1209300CrossRefGoogle Scholar
  60. White WM (2015) Probing the Earth’s deep interior through geochemistry. Geochemical Perspectives 4(2):95–251. doi:10.7185/geochempersp.4.2CrossRefGoogle Scholar
  61. Xiao S (2014) 6.10 – oxygen and early animal evolution A2 – Holland, Heinrich D. In: Turekian KK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 231–250CrossRefGoogle Scholar
  62. Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351(6272):493–496. doi:10.1126/science.aad0525CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Earth & Atmospheric SciencesCornell UniversityIthacaUSA