Skip to main content

Lead Isotopes

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

Isotopic ratios of Pb are key geochemical tracers for unraveling the compositional evolution of the solar system, the Earth, and the continental crust, and are an important geochronometer with many different applications.

Lead has of four naturally occurring stable isotopes, 204Pb (1.4 %), 206Pb (24.1 %), 207Pb (22.1 %), and 208Pb (52.10 %). 204Pb is non-radiogenic; the latter three are the final decay products of the three decay chains from uranium (238U and 235U) and thorium (232Th), where all the intermediate members of each series have relatively short half-lives and can be ignored on long geological timescales (tens millions of years). Some of the U decay series and 230Th decay present applications for shorter time periods (i.e., volcanic eruption, sedimentation at the bottom of the oceans, coral dating).

238U has a half-life comparable to the age of the Earth , i.e., 4.47 Ga, whereas 235U half-life is much shorter, 0.704 Ga, and as a result, almost all the original 235...

This is a preview of subscription content, log in via an institution.

References

  • Abouchami, W., Hofmann, A. W., Galer, S. J. G., Frey, F. A., Eisele, J., and Feigenson, M. D., 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434(7035), 851–856.

    Google Scholar 

  • Armstrong, R. L., 1968. A model for Pb and Sr isotope evolution in a dynamic earth. Reviews of Geophysics, 6, 175–199.

    Google Scholar 

  • Bouvier A., Blichert-Toft, J., Albarède F., 2009. Martian meteorite chronology and the evolution of the interior of Mars. Earth and Planetary Science Letters, 280, 285–295.

    Google Scholar 

  • Boyle, E. A., et al. 2014. Anthropogenic lead emissions in the ocean: the evolving global experiment. Oceanography 27(1), 69–75, http://dx.doi.org/10.5670/oceanog.2014.10.

    Google Scholar 

  • Catanzaro, E. J., Murphy, T. J., Garner, E. L., and Shields, W. R., 1969. Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium. Journal of Research of the National Bureau of Standards, 73A, 511–516.

    Google Scholar 

  • Doe, B. R., and Zartman, R. E., 1979. Chapter 2. Plumbotectonics I, The Phanerozoic. In Barnes, H. L., (ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd edn. New York: Wiley-Interscience, pp. 22–70.

    Google Scholar 

  • Fourny, A., Weis, D., and Scoates, J. S., 2016. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials. Geochemistry, Geophysics, Geosystems, 17(3), 739–773, doi:10.1002/2015GC006181.

    Google Scholar 

  • Galer, S. J. G., 1999. Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157(3–4), 255–274.

    Google Scholar 

  • Gast, P. W., Tilton, G. R., Hedge, C., 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145(3637), 1181–1185.

    Google Scholar 

  • Gerling, E. K., 1942. Age of the Earth according to radioactive data. Doklady Academic of Sciences URSS, 24, 259–261.

    Google Scholar 

  • Heyl, A. V., Landis, G. P., and Zartman, R. E., 1974. Isotopic evidence for the origin of Mississippi Valley-type mineral deposits: a review. Economic Geology, 69(7), 1025–1059.

    Google Scholar 

  • Hofmann. A. W., and White, W. M., 1980. The role of subducted oceanic crust in mantle evolution. Year Book – Carnegie Institution of Washington, 79, 477–483.

    Google Scholar 

  • Hofmann, A. W., 2003. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Carlson, R., (ed.), Treatise on Geochemistry, 2nd edn. Amsterdam: Elsevier, vol 3, pp. 67–101.

    Google Scholar 

  • Holmès, A., 1946. An estimate of the age of the earth. Nature, 157, 680–4.

    Google Scholar 

  • Houtermans, F. G., 1946. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschaften, 33(6), 185–186.

    Google Scholar 

  • Nier, A. O., 1938. Variations in the relative abundances of the isotopes of common lead from various sources. Journal of the American Chemical Society, 60, 1571.

    Google Scholar 

  • Nier, A. O., 1939. The isotopic constitution of radiogenic leads and the measurement of geological times II. Physics Review, 55, 153.

    Google Scholar 

  • Nobre Silva, I. G. N., Weis, D., Barling, J., and Scoates, J. S., 2009. Leaching systematics and matrix elimination for the determination of high-precision Pb isotope compositions of ocean island basalts. Geochemistry, Geophysics, Geosystems, 10, doi:10.1029/2009GC002537

    Google Scholar 

  • Patterson, C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10(4), 230–237.

    Google Scholar 

  • Patterson, C. C.. 1965. Contaminated and natural lead environments of man. Archives of Environmental Health, 11(3), 344–366.

    Google Scholar 

  • Patterson, C. C., 1980. An alternate perspective—lead pollution in the human environment: origin, extent, and significance. In Lead in the Human Environment, Washington, D.C.: National Academy of Sciences, pp. 265–349.

    Google Scholar 

  • Paul, M., van de Flierdt, T., Rehkämper, M., Khondoker, R., Weiss, D., Lohan, M. C., and Homoky, W. B., 2015. Tracing the Agulhas leakage with lead isotopes, Geophysical Research Letters, 42(20), 8515–8521, doi:10.1002/2015GL065625.

    Google Scholar 

  • Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H., Layne, G. D., and Eiler, J. M., 2005. Pb isotopic variability in melt inclusions from the EMI-EMII-HIMU mantle end-members and the role of the oceanic lithosphere. Earth and Planetary Science Letters, 240(3–4), 605–620.

    Google Scholar 

  • Stacey, J. S., Kramers, J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221.

    Google Scholar 

  • Tatsumoto, M., 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth and Planetary Science Letters, 38, 63–87.

    Google Scholar 

  • Taylor, P. N., Moorbath, S., Goodwin, R., and Petrykowski, A. C., 1980. Crustal contamination as an indicator of the extent of early Archaean continental crust: Pb isotopic evidence from the late Archaean gneisses of West Greenland. Geochimica et Cosmochimica Acta, 44(10), 1437–1453.

    Google Scholar 

  • Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G. A., et al., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8), doi: 10.1029/2006GC001283.

    Google Scholar 

  • Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M., and Scoates, J. S., 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience, 4(12), 831–838.

    Google Scholar 

  • Wetherill, G. W., 1956. Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37(3), 320–326.

    Google Scholar 

  • White, W. M., Albarède, F., and Télouk, P., 2000. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3–4), 257–270.

    Google Scholar 

  • White, W. M., 2013. Geochemistry. Oxford: Wiley-Blackwell, 660 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Weis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Weis, D. (2016). Lead Isotopes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_293-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_293-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics