Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Lead Isotopes

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_293-1

Introduction

Isotopic ratios of Pb are key geochemical tracers for unraveling the compositional evolution of the solar system, the Earth, and the continental crust, and are an important geochronometer with many different applications.

Lead has of four naturally occurring stable isotopes, 204Pb (1.4 %), 206Pb (24.1 %), 207Pb (22.1 %), and 208Pb (52.10 %). 204Pb is non-radiogenic; the latter three are the final decay products of the three decay chains from uranium (238U and 235U) and thorium (232Th), where all the intermediate members of each series have relatively short half-lives and can be ignored on long geological timescales (tens millions of years). Some of the U decay series and 230Th decay present applications for shorter time periods (i.e., volcanic eruption, sedimentation at the bottom of the oceans, coral dating).

238U has a half-life comparable to the age of the Earth , i.e., 4.47 Ga, whereas 235U half-life is much shorter, 0.704 Ga, and as a result, almost all the original 235...

Keywords

Isotopic Composition Continental Crust Lead Isotope Thermal Ionization Mass Spectrometry Lead Isotope Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Abouchami, W., Hofmann, A. W., Galer, S. J. G., Frey, F. A., Eisele, J., and Feigenson, M. D., 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434(7035), 851–856.Google Scholar
  2. Armstrong, R. L., 1968. A model for Pb and Sr isotope evolution in a dynamic earth. Reviews of Geophysics, 6, 175–199.Google Scholar
  3. Bouvier A., Blichert-Toft, J., Albarède F., 2009. Martian meteorite chronology and the evolution of the interior of Mars. Earth and Planetary Science Letters, 280, 285–295.Google Scholar
  4. Boyle, E. A., et al. 2014. Anthropogenic lead emissions in the ocean: the evolving global experiment. Oceanography 27(1), 69–75,  http://dx.doi.org/10.5670/oceanog.2014.10.
  5. Catanzaro, E. J., Murphy, T. J., Garner, E. L., and Shields, W. R., 1969. Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium. Journal of Research of the National Bureau of Standards, 73A, 511–516.Google Scholar
  6. Doe, B. R., and Zartman, R. E., 1979. Chapter 2. Plumbotectonics I, The Phanerozoic. In Barnes, H. L., (ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd edn. New York: Wiley-Interscience, pp. 22–70.Google Scholar
  7. Fourny, A., Weis, D., and Scoates, J. S., 2016. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials. Geochemistry, Geophysics, Geosystems, 17(3), 739–773, doi:10.1002/2015GC006181.Google Scholar
  8. Galer, S. J. G., 1999. Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157(3–4), 255–274.Google Scholar
  9. Gast, P. W., Tilton, G. R., Hedge, C., 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145(3637), 1181–1185.Google Scholar
  10. Gerling, E. K., 1942. Age of the Earth according to radioactive data. Doklady Academic of Sciences URSS, 24, 259–261.Google Scholar
  11. Heyl, A. V., Landis, G. P., and Zartman, R. E., 1974. Isotopic evidence for the origin of Mississippi Valley-type mineral deposits: a review. Economic Geology, 69(7), 1025–1059.Google Scholar
  12. Hofmann. A. W., and White, W. M., 1980. The role of subducted oceanic crust in mantle evolution. Year Book – Carnegie Institution of Washington, 79, 477–483.Google Scholar
  13. Hofmann, A. W., 2003. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Carlson, R., (ed.), Treatise on Geochemistry, 2nd edn. Amsterdam: Elsevier, vol 3, pp. 67–101.Google Scholar
  14. Holmès, A., 1946. An estimate of the age of the earth. Nature, 157, 680–4.Google Scholar
  15. Houtermans, F. G., 1946. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschaften, 33(6), 185–186.Google Scholar
  16. Nier, A. O., 1938. Variations in the relative abundances of the isotopes of common lead from various sources. Journal of the American Chemical Society, 60, 1571.Google Scholar
  17. Nier, A. O., 1939. The isotopic constitution of radiogenic leads and the measurement of geological times II. Physics Review, 55, 153.Google Scholar
  18. Nobre Silva, I. G. N., Weis, D., Barling, J., and Scoates, J. S., 2009. Leaching systematics and matrix elimination for the determination of high-precision Pb isotope compositions of ocean island basalts. Geochemistry, Geophysics, Geosystems, 10, doi:10.1029/2009GC002537Google Scholar
  19. Patterson, C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10(4), 230–237.Google Scholar
  20. Patterson, C. C.. 1965. Contaminated and natural lead environments of man. Archives of Environmental Health, 11(3), 344–366.Google Scholar
  21. Patterson, C. C., 1980. An alternate perspective—lead pollution in the human environment: origin, extent, and significance. In Lead in the Human Environment, Washington, D.C.: National Academy of Sciences, pp. 265–349.Google Scholar
  22. Paul, M., van de Flierdt, T., Rehkämper, M., Khondoker, R., Weiss, D., Lohan, M. C., and Homoky, W. B., 2015. Tracing the Agulhas leakage with lead isotopes, Geophysical Research Letters, 42(20), 8515–8521, doi:10.1002/2015GL065625.Google Scholar
  23. Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H., Layne, G. D., and Eiler, J. M., 2005. Pb isotopic variability in melt inclusions from the EMI-EMII-HIMU mantle end-members and the role of the oceanic lithosphere. Earth and Planetary Science Letters, 240(3–4), 605–620.Google Scholar
  24. Stacey, J. S., Kramers, J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221.Google Scholar
  25. Tatsumoto, M., 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth and Planetary Science Letters, 38, 63–87.Google Scholar
  26. Taylor, P. N., Moorbath, S., Goodwin, R., and Petrykowski, A. C., 1980. Crustal contamination as an indicator of the extent of early Archaean continental crust: Pb isotopic evidence from the late Archaean gneisses of West Greenland. Geochimica et Cosmochimica Acta, 44(10), 1437–1453.Google Scholar
  27. Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G. A., et al., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8), doi: 10.1029/2006GC001283.Google Scholar
  28. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M., and Scoates, J. S., 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience, 4(12), 831–838.Google Scholar
  29. Wetherill, G. W., 1956. Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37(3), 320–326.Google Scholar
  30. White, W. M., Albarède, F., and Télouk, P., 2000. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3–4), 257–270.Google Scholar
  31. White, W. M., 2013. Geochemistry. Oxford: Wiley-Blackwell, 660 pp.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Pacific Centre for Isotopic and Geochemical Research, Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada