Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Earth’s Continental Crust

  • Roberta L. RudnickEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_277-1


The continental crust is typically defined as that portion of the outer rocky layer of the Earth that extends vertically from the surface (subaerial or submarine) to the Mohorovicic discontinuity ( or Moho ) and laterally to the slope break on continental shelves (Cogley 1984).


The continental crust has an average thickness of around 35 km (Hacker et al. 2015; Huang et al. 2013), considerably thicker than oceanic crust , which averages 6.5 km in thickness (White and Klein 2014). The lower density and greater thickness of the continental crust compared to oceanic crust causes it to ride higher on the mantle; consequently, a large proportion (70% by area) is exposed above sea level. Data for the physical properties of the continental crust are given in Table 1.
Table 1

Physical parameters of different portions of the continental crust





Total Mass

Total Thickness





× 1021 kg














This is a preview of subscription content, log in to check access.



Peter van Keken, Gray Bebout, Ralf Halama, and Sujoy Mukhopadhyay all provided help in tracking down compositional estimates for the continental crust or other data. John Cottle kindly provided the beautiful zircon images in Figure 5. Mike Free, Allison Greaney, and Ming Tang provided comments that helped me to clarify different parts of the original manuscript. I appreciate review comments from Kent Condie, Bruno Dhuime, Brad Hacker, Chris Hawkesworth, and Scott McLennan. I am grateful for support of my research from the National Science Foundation over the past two decades. Finally, I thank Bill White for being exceedingly patient while the writing of this entry was delayed due to my move across a continent.


  1. Abers GA, Hacker BR (2016) A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst. doi:10.1002/2015GC006171Google Scholar
  2. Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14CrossRefGoogle Scholar
  3. Allègre CJ, Rousseau D (1984) The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett 67:19–34. doi:10.1016/0012-821X(84)90035-9CrossRefGoogle Scholar
  4. Anderson AT (1982) Parental basalts in subduction zones: implications for continental evolution. J Geophys Res 87:7047–7060CrossRefGoogle Scholar
  5. Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil Trnas R Soc Lond A 301:443–472CrossRefGoogle Scholar
  6. Armstrong RL (1991) The persistent myth of crustal growth. Aust J Earth Sci 38:613–630CrossRefGoogle Scholar
  7. Arndt NT (2013) The formation and evolution of the continental crust. Geochem Perspect 2(3):405–533. doi:10.7185/geochempersp.2.3CrossRefGoogle Scholar
  8. Arndt N, Davaille A (2013) Episodic Earth evolution. Tectonophysics 609:661–674. doi:10.1016/j.tecto.2013.07.002CrossRefGoogle Scholar
  9. Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophys 161:201–212CrossRefGoogle Scholar
  10. Augland LE, David J (2015) Protocrustal evolution of the Nuvvuagittuq Supracrustal Belt as determined by high precision zircon Lu-Hf and U-Pb isotope data. Earth Planet Sci Lett 428:162–171. doi:10.1016/j.epsl.2015.07.039CrossRefGoogle Scholar
  11. Barth M, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213CrossRefGoogle Scholar
  12. Behn MD, Kelemen PB (2003) The relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem Geophys Geosys 4:1041. doi:10.1029/2002GC000393CrossRefGoogle Scholar
  13. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112(47):14518–14521. doi:10.1073/pnas.1517557112CrossRefGoogle Scholar
  14. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hfisotope data. Lithos 119:457–466. doi:10.1016/j.lithos.2010.07.024CrossRefGoogle Scholar
  15. Bowring SA, Williams IS (1999) Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134(1):3–16CrossRefGoogle Scholar
  16. Boyet M, Blichert-Toft J, Rosing MT, Storey M, Telouk P, Albarede F (2003) 142Nd evidence for early Earth diferentiation. Earth Planet Sci Lett 214:427–442. doi:10.1016/S0012-821X(03)00423-0CrossRefGoogle Scholar
  17. Campbell IH, Allen CM (2008) Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci 1(8):554–558. doi:10.1038/ngeo259CrossRefGoogle Scholar
  18. Campbell IH, Taylor SR (1985) No water, no granites – no oceans, no continents. Geophys Res Lett 10:1061–1064CrossRefGoogle Scholar
  19. Canil D, Crockford PW, Rossin R, Telmer K (2015) Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chem Geol 396:134–142. doi:10.1016/j.chemgeo.2014.12.029CrossRefGoogle Scholar
  20. Caro G, Bourdon B, Birck JL, Moorbath S (2003) Sm-146-Nd-142 evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423(6938):428–432. doi:10.1038/nature01668CrossRefGoogle Scholar
  21. Cates NL, Mojzsis SJ (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, Northern Quebec. Earth Planet Sci Lett 255(1–2):9–21. doi:10.1016/j.epsl.2006.11.034CrossRefGoogle Scholar
  22. Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bull 125(1–2):14–32. doi:10.1130/b30722.1CrossRefGoogle Scholar
  23. Chauvel C, Garcon M, Bureau S, Besnault A, Jahn BM, Ding ZL (2014) Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth Planet Sci Lett 388:48–58. doi:10.1016/j.epsl.2013.11.045CrossRefGoogle Scholar
  24. Chen K, Walker RJ, Rudnick RL, Gao S, Gaschnig RM, Puchtel IS, Tang M, Hu Z-C (2016) Platinum-group element abundances and Re-Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim Cosmochim Acta 191:1–16. doi:10.1016/j.gca.2016.07.004CrossRefGoogle Scholar
  25. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788CrossRefGoogle Scholar
  26. Clift PD, Vannucchi P, Morgan JP (2009) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci Rev 97(1–4):80–104. doi:10.1016/j.earscirev.2009.10.003CrossRefGoogle Scholar
  27. Cogley JG (1984) Continental margins and the extent and number of the continents. Rev Geophys Space Phys 22:101–122CrossRefGoogle Scholar
  28. Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in western. Aust Nat 321(6072):766–769. doi:10.1038/321766a0CrossRefGoogle Scholar
  29. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results form surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  30. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163(1–4):97–108. doi:10.1016/s0012-821x(98)00178-2CrossRefGoogle Scholar
  31. Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180(3–4):227–236. doi:10.1016/j.precamres.2010.03.008CrossRefGoogle Scholar
  32. Condie KC, Belousova E, Griffin WL, Sircombe KN (2009) Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res 15(3–4):228–242. doi:10.1016/j.gr.2008.06.001CrossRefGoogle Scholar
  33. Cottle JM, Stearns MA (2017) Application of single shot laser ablation split stream to accessory phase petrochronology. In: Macrostructural geochronology; lattice to atom-scale records of planetary evolution. American Geophysical Union Monograph, Washington, DCGoogle Scholar
  34. Cottrell RD, Tarduno JA, Bono RK, Dare MS, Mitra G (2016) The inverse microconglomerate test: further evidence for the preservation of Hadean magnetizations in metasediments of the Jack Hills, Western Australia. Geophys Res Lett 43(9):4215–4220. doi:10.1002/2016gl068150CrossRefGoogle Scholar
  35. Darling J, Storey C, Hawkesworth C (2009) Impact melt sheet zircons and their implications for the Hadean crust. Geology 37(10):927–930. doi:10.1130/g30251a.1CrossRefGoogle Scholar
  36. David J, Godin L, Stevenson R, O’Neil J, Francis D (2009) U-Pb ages (3.8-2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, superior Craton, Canada. Geol Soc Am Bull 121(1–2):150–163. doi:10.1130/b26369.1Google Scholar
  37. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335(6074):1334–1336. doi:10.1126/science.1216066CrossRefGoogle Scholar
  38. Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nat Geosci 8(7):552–555. doi:10.1038/ngeo2466CrossRefGoogle Scholar
  39. Ducea MN (2002) Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J Geophys Res-Solid Earth 107(B11)Google Scholar
  40. Eade KE, Fahrig WF (1971) Chemical evolutionary trends of continental plates – a preliminary study of the Canadian Sheild. Canadian Geological Survey, OttawaGoogle Scholar
  41. Eade KE, Fahrig WF (1973) Regional, lithological, and temporal variation in the abundances of some trace elements in the Canadian Shield. Canadian Geological Survey, OttawaGoogle Scholar
  42. Eichelberger JC (1975) Origin of andesite and dacite – evidence of mixing of magmas at Glass Mountain in California and at other circum-Pacific volcanoes. Geol Soc Am Bull 86(10):1381–1391. doi:10.1130/0016-7606(1975)86<1381:ooaade>2.0.co;2CrossRefGoogle Scholar
  43. Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, Geophysical monograph, vol 138. American Geophysical Union, Washington, DC, pp 23–45CrossRefGoogle Scholar
  44. Fahrig WF, Eade KE (1968) The chemical evolution of the Canadian Shield. Geochim Cosmochim Acta 5:1247–1252Google Scholar
  45. Fegley B (2014) Venus. In: Davis AM (ed) Planets, asteroids, comets and the solar system, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 127–148Google Scholar
  46. Fisher CM, Vervoort JD, DuFrane SA (2014) Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochem Geophys Geosyst 15(1):121–139. doi:10.1002/2013gc004962CrossRefGoogle Scholar
  47. Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W, Williams IR, Myers JS (1983) Ion micropre identification of 4,11-4,200 Myr-old terrestiral zircons. Nature 304(5927):616–618. doi:10.1038/304616a0CrossRefGoogle Scholar
  48. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156(2):197–215. doi:10.1007/s00410-008-0281-5CrossRefGoogle Scholar
  49. Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Hu Y-K, Zhao Z-D (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975CrossRefGoogle Scholar
  50. Gaschnig RM, Rudnick RL, McDonough WF, Kaufman AJ, Valley JW, Hu Z-C, Gao S, Beck ML (2016) Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochim Cosmochim Acta 186:316–343CrossRefGoogle Scholar
  51. Goldschmidt VM (1933) Grundlagen der quantitativen Geochemie. Fortschr Mienral Kirst Petrog 17:112Google Scholar
  52. Goldstein SL (1989) Decoupled evolution of Nd and Sr isotopes in the continental crust and the mantle. Nature 336:733–738CrossRefGoogle Scholar
  53. Goodwin AM (1996) Principles of Precambrian geology. Academic, LondonGoogle Scholar
  54. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghoj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646. doi:10.1130/g23603a.1CrossRefGoogle Scholar
  55. Gurnis M, Davies GF (1986) Apparent episodic crustal growth arising from a smoothly evolving mantle. Geology 14:396–399CrossRefGoogle Scholar
  56. Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307(3–4):501–516. doi:10.1016/j.epsl.2011.05.024CrossRefGoogle Scholar
  57. Hacker BR, Kelemen PB, Behn MD (2015) Continental lower crust. In: Jeanloz R, Freeman KH (eds) Annu Rev Earth Planet Sci 43:167–205Google Scholar
  58. Harper CL, Jacobsen SB (1992) Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5 Gyr) differentiation of the Earth’s mantle. Nature 360:728–732CrossRefGoogle Scholar
  59. Harrison TM (2009) The Hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505. doi:10.1146/annurev.earth.031208.100151CrossRefGoogle Scholar
  60. Haskin MA, Haskin LA (1966) Rare earths in European shales: a redetermination. Science 154:507–509Google Scholar
  61. Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443(7113):811–817. doi:10.1038/nature05191CrossRefGoogle Scholar
  62. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc 167(2):229–248. doi:10.1144/0016-76492009-072CrossRefGoogle Scholar
  63. Hawkesworth C, Cawood P, Dhuime B (2013) Continental growth and the crustal record. Tectonophysics 609:651–660. doi:10.1016/j.tecto.2013.08.013CrossRefGoogle Scholar
  64. Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5CrossRefGoogle Scholar
  65. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456(7221):493–496. doi:10.1038/nature07465CrossRefGoogle Scholar
  66. Hu ZC, Gao S (2008) Upper crustal abundances of trace elements: revision and update. Chemi Geol 253(3–4):205–221. doi:10.1016/j.chemgeo.2008.05.010CrossRefGoogle Scholar
  67. Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF (2013) A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem Geophys Geosyst 14(6):2003–2029. doi:10.1002/ggge.20129CrossRefGoogle Scholar
  68. Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164:1229–1242CrossRefGoogle Scholar
  69. Jagoutz O, Schmidt MW (2013) The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet Sci Lett 371:177–190. doi:10.1016/j.epsl.2013.03.051CrossRefGoogle Scholar
  70. Jaupart C, Mareschal J-C (2014) Constraints on crustal heat production from heat flow data. In: Rudnick RL (ed) The crust, Treatise on geochemistry, vol 4. Elsevier, Oxford, pp 53–72Google Scholar
  71. Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth-Sci Rev 148:150–173. doi:10.1016/j.earscirev.2015.05.006CrossRefGoogle Scholar
  72. Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res 106(4):6423–6446CrossRefGoogle Scholar
  73. Kamber BS (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean atmosphere chemistry. Chem Geol 274(1–2):19–28. doi:10.1016/j.chemgeo.2010.03.009CrossRefGoogle Scholar
  74. Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta 69(4):1041–1058. doi:10.1016/j.gca.2004.08.020CrossRefGoogle Scholar
  75. Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278CrossRefGoogle Scholar
  76. Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19CrossRefGoogle Scholar
  77. Kelemen PB, Behn MD (2016) Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat Geosci 9:197–205. doi:10.1038/NGEO2662CrossRefGoogle Scholar
  78. Kelemen PB et al (2003a) Along-strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. In: Eiler J (ed) Inside the subduction factory, AGU monograph, vol 138. Washington, DC, pp 293–311Google Scholar
  79. Kelemen PB, Hanghoj K, Greene A (2003b) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 593–659Google Scholar
  80. Keller CB, Schoene B (2012) Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485(7399):490–493. doi:10.1038/nature11024CrossRefGoogle Scholar
  81. Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523(7560):301–307. doi:10.1038/nature14584CrossRefGoogle Scholar
  82. Kemp AIS, Hawkesworth CJ (2014) Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 379–421Google Scholar
  83. Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439(7076):580–583CrossRefGoogle Scholar
  84. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296(1–2):45–56. doi:10.1016/j.epsl.2010.04.043CrossRefGoogle Scholar
  85. Kemp AIS, Hickman AH, Kirkland CL, Vervoort JD (2015) Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precambrian Res 261:112–126. doi:10.1016/j.precamres.2015.02.011CrossRefGoogle Scholar
  86. Kenny GG, Whitehouse MJ, Kamber BS (2016) Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44(6):435–438. doi:10.1130/g37898.1CrossRefGoogle Scholar
  87. Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3(9):631–636. doi:10.1038/ngeo924CrossRefGoogle Scholar
  88. König S, Munker C, Hohl S, Paulick H, Barth AR, Lagos M, Pfander J, Buchl A (2011) The Earth's tungsten budget during mantle melting and crust formation. Geochim Cosmochim Acta 75(8):2119–2136. doi:10.1016/j.gca.2011.01.031CrossRefGoogle Scholar
  89. Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112. doi:10.1016/j.chemgeo.2013.02.019CrossRefGoogle Scholar
  90. Lee CTA (2014) Physics and chemistry of deep continental crust recycling. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 423–456Google Scholar
  91. Lee C-TA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274. doi:10.1016/j.epsl.2014.02.044CrossRefGoogle Scholar
  92. Lee CTA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263(3–4):370–387CrossRefGoogle Scholar
  93. Lee CTA, Morton DM, Little MG, Kistler R, Horodyskyj UN, Leeman WP, Agranier A (2008) Regulating continent growth and composition by chemical weathering. Proc Natl Acad Sci U S A 105(13):4981–4986CrossRefGoogle Scholar
  94. Lee CTA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A (2016) Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci 9(6):417–424. doi:10.1038/ngeo2707CrossRefGoogle Scholar
  95. Li S, Gaschnig RM, Rudnick RL (2016) Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochim Cosmochim Acta 176:96–117. doi:10.1016/j.gea.2015.12.012CrossRefGoogle Scholar
  96. Liu X-M, Rudnick RL (2011) Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci U S A 108(52):20873–20880. doi:10.1073/pnas.1115671108CrossRefGoogle Scholar
  97. Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust – a geochronological and geochemical study of the 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta 56(3):1281–1300. doi:10.1016/0016-7037(92)90062-nCrossRefGoogle Scholar
  98. Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756CrossRefGoogle Scholar
  99. Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30(4):319–322CrossRefGoogle Scholar
  100. McCoy TJ, Nittler LR (2014) Mercury. In: Davis AM (ed) Meteorites, comets and planets, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 119–126Google Scholar
  101. McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738CrossRefGoogle Scholar
  102. McDonough WF, Sun S-S (1995) Composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  103. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:art. no.-2000GC000109Google Scholar
  104. McLennan SM, Taylor SR (1980) Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285:621–624CrossRefGoogle Scholar
  105. McLennan SM, Taylor SR (1991) Sedimentary-rocks and crustal evolution – tectonic setting and secular trends. J Geol 99(1):1–21CrossRefGoogle Scholar
  106. McLennan SM, Taylor SR (1996) Heat flow and the chemical composition of continental crust. J Geol 104:396–377CrossRefGoogle Scholar
  107. McSween HY Jr, McLennan SM (2014) Mars. In: Davis AM (ed) Meteorites, comets and planets, Treatise on geochemistry, vol 2. Elsevier, Oxford, pp 251–300Google Scholar
  108. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409(6817):178–181. doi:10.1038/35051557CrossRefGoogle Scholar
  109. Moorbath S, Gale NH, Pankhurst RJ, McGregor VR, Onions RK (1972) Further rubidium-strontium age determinations on very early Precambrian rocks of Godthaab district, West Greenland. Nat Phys Sci 240(100):78–82CrossRefGoogle Scholar
  110. Moorbath S, Onions RK, Pankhurst RJ (1973) Early Archaean age for Isua iron formation, West Greenland. Nature 245(5421):138–139. doi:10.1038/245138a0CrossRefGoogle Scholar
  111. Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth’s crust. Chem Geol 147(3–4):201–216. doi:10.1016/s0009-2541(98)00013-8CrossRefGoogle Scholar
  112. Nance WB, Taylor SR (1976) Rare-Earth element patterns and crustal evolution. 1. Australian post-Archean sedimentary-rocks. Geochim Cosmochim Acta 40(12):1539–1551. doi:10.1016/0016-7037(76)90093-4CrossRefGoogle Scholar
  113. Nance WB, Taylor SR (1977) Rare-Earth element patterns and crustal evolution. 2. Archean sedimentary-rocks from Kalgoorlie, Australia. Geochim Cosmochim Acta 41(2):225–231. doi:10.1016/0016-7037(77)90229-0CrossRefGoogle Scholar
  114. Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss Complex of southern west Greenland; the world’s most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Res 78(1–3):1–39. doi:10.1016/0301-9268(95)00066-6CrossRefGoogle Scholar
  115. Nutman AP, Bennett VC, Friend CRL, Rosing MT (1997) ~ 3710 and >3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem Geol 141(3–4):271–287. doi:10.1016/s0009-2541(97)00084-3CrossRefGoogle Scholar
  116. Nutman AP, Bennett VC, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. doi:10.1038/nature19355Google Scholar
  117. O’Neil J, Carlson RW (2017) Building Archean cratons from Hadean mafic crust. Science 355:1199–1202CrossRefGoogle Scholar
  118. O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for hadean mafic crust. Science 321(5897):1828–1831. doi:10.1126/science.1161925CrossRefGoogle Scholar
  119. O’Neil J, Rizo H, Boyet M, Carlson RW, Rosing MT (2016) Geochemistry and Nd isotopic characteristics of Earth’s Hadean mantle and primitive crust. Earth Planet Sci Lett 442:194–205. doi:10.1016/j.epsl.2016.02.055CrossRefGoogle Scholar
  120. Park JW, Hu ZC, Gao S, Campbell IH, Gong HJ (2012) Platinum group element abundances in the upper continental crust revisited – new constraints from analyses of Chinese loess. Geochim Cosmochim Acta 93:63–76. doi:10.1016/j.gca.2012.06.026CrossRefGoogle Scholar
  121. Parman SW (2015) Time-lapse zirconography: imaging punctuated continental evolution. Geochem Perspect Lett 1:43–52. doi:10.7185/geochemlet.1505CrossRefGoogle Scholar
  122. Pasyanos ME, Masters TG, Laske G, Ma ZT (2014) LITHO1.0: an updated crust and lithospheric model of the earth. J Geophys ResSolid Earth 119(3):2153–2173. doi:10.1002/2013jb010626CrossRefGoogle Scholar
  123. Payne JL, McInerney DJ, Barovich KM, Kirkland CL, Pearson NJ, Hand M (2016) Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos 248:175–192. doi:10.1016/j.lithos.2015.12.015CrossRefGoogle Scholar
  124. Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449(7159):202–205. doi:10.1038/nature06122CrossRefGoogle Scholar
  125. Peucker-Ehrenbrink B, Jahn B-M (2001) Rhenium-osmium isotope systematics and platinum group element concentations: loess and the upper continental crust. Geochem Geophys Geosyst 2:2001GC000172CrossRefGoogle Scholar
  126. Plank T (2005) Constraints from Th/La on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944CrossRefGoogle Scholar
  127. Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM, Sarkar C, Schaltegger U, Creaser RA, Pearson DG (2016) No evicence for Hadean continental crust within Earth’s oldest evovled rock unit. Nat Geosci. doi:10.1038/ngeo2786Google Scholar
  128. Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461(7268):1269–1273. doi:10.1038/nature08510CrossRefGoogle Scholar
  129. Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing MT, Paquette JL (2012) The elusive Hadean enriched reservoir revealed by Nd-142 deficits in Isua Archaean rocks. Nature 491(7422):96–U109. doi:10.1038/nature11565CrossRefGoogle Scholar
  130. Rollinson H (2008) Secular evolution of the continental crust: implications for crust evolution models. Geochem Geophys Geosyst 9. doi:10.1029/2008gc002262Google Scholar
  131. Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited Nd-142 anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57. doi:10.1016/j.epsl.2012.11.023CrossRefGoogle Scholar
  132. Roth ASG, Bourdon B, Mojzsis SJ, Rudge JF, Guitreau M, Blichert-Toft J (2014) Combined Sm-147,Sm-146-Nd-143,Nd-142 constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst 15(6):2329–2345. doi:10.1002/2014gc005313CrossRefGoogle Scholar
  133. Rudnick RL (1995) Making continental crust. Nature 378:571–578CrossRefGoogle Scholar
  134. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309CrossRefGoogle Scholar
  135. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust, vol 3. Elsevier, Amsterdam, pp 1–64Google Scholar
  136. Sauzéat L, Rudnick RL, Chauvel C, Garçon M, Tang M (2015) New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet Sci Lett 428:181–192. doi:10.1016/j.epsl.2015.07.032CrossRefGoogle Scholar
  137. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293(5530):683–687. doi:10.1126/science.1061372CrossRefGoogle Scholar
  138. Scherer EE, Whitehouse MJ, Munker C (2007) Zircon as a monitor of crustal growth. Elements 3(1):19–24. doi:10.2113/gselements.3.1.19CrossRefGoogle Scholar
  139. Schoene B (2014) U-Pb geochronology. In: Rudnick RL (ed) The crust, vol 4. Elsevier, Oxford, pp 341–378Google Scholar
  140. Shaw DM, Reilly GA, Muysson JR, Pattenden GE, Campbell FE (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Can J Earth Sci 4:829–853CrossRefGoogle Scholar
  141. Shaw DM, Dostal J, Keays RR (1976) Additional estimates of continental surface Precambrian shield composition in Canada. Geochim Cosmochim Acta 40:73–83CrossRefGoogle Scholar
  142. Shaw DM, Cramer JJ, Higgins MD, Truscott MG (1986) Composition of the Canadian Precambrian shield and the continental crust of the earth. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust, vol 24. Geol Soc London, London, pp 257–282Google Scholar
  143. Shaw DM, Dickin AP, Li H, McNutt RH, Schwarcz HP, Truscott MG (1994) Crustal geochemistry in the Wawa-Foleyet region, Ontario. Can J Earth Sci 31(7):1104–1121CrossRefGoogle Scholar
  144. Simon L, Lecuyer C (2005) Continental recycling: the oxygen isotope point of view. Geochem Geophys Geosyst 6:Q08004. doi:10.1029/2005GC000958CrossRefGoogle Scholar
  145. Söderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324. doi:10.1016/s0012-821x(04)00012-3CrossRefGoogle Scholar
  146. Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68CrossRefGoogle Scholar
  147. Tang M, Rudnick RL, McDonough WF, Gaschnig RM, Huang Y (2015) Europium anomalies constrain the mass of recycled lower continental crust. Geology 43(8):703–706. doi:10.1130/g36641.1CrossRefGoogle Scholar
  148. Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351(6271):372–375. doi:10.1126/science.aad5513CrossRefGoogle Scholar
  149. Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349(6247):521–524. doi:10.1126/science.aaa9114CrossRefGoogle Scholar
  150. Taylor SR (1964) Abundance of chemical elements in the continental crust – a new table. Geochim Cosmochim Acta 28:1273–1285CrossRefGoogle Scholar
  151. Taylor SR (1977) Island arc models and the composition of the continental crust. In: Talwani M, Pitmann WC III (eds) Island arcs, deep sea trenches and back-arc basins, vol 1. American Geophysical Union, Washington, DC, pp 325–336CrossRefGoogle Scholar
  152. Taylor SR, McLennan S (1985) The continenal crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  153. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  154. Taylor SR, McLennan SM (2009) Planetary crusts their composition, origin and evolution. Cambridge University Press, CambridgeGoogle Scholar
  155. Taylor SR, McLennan SM, McCulloch MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim Cosmochim Acta 47:1897–1905CrossRefGoogle Scholar
  156. Teng FZ, McDonough WF, Rudnick RL, Dalpe C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68(20):4167–4178CrossRefGoogle Scholar
  157. Teng FZ, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu YS (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255(1–2):47–59. doi:10.1016/j.chemgeo.2008.06.009CrossRefGoogle Scholar
  158. Togashi S, Imai N, Okuyama-Kusunose Y, Tanaka T, Okai T, Koma T, Murata Y (2000) Young upper crustal chemical composition of the orogenic Japan arc. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000083Google Scholar
  159. van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys ResSolid Earth 116. doi:10.1029/2010jb007922Google Scholar
  160. Veizer J, Compston W (1976) SR-87-SR-86 in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40(8):905–914. doi:10.1016/0016-7037(76)90139-3CrossRefGoogle Scholar
  161. Vervoort JD, Kemp AIS (2016) Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem Geol 425:65–75. doi:10.1016/j.chemgeo.2016.01.023CrossRefGoogle Scholar
  162. Vervoort JD, Patchett PJ, Gehrels GE, Nutman AP (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379(6566):624–627. doi:10.1038/379624a0CrossRefGoogle Scholar
  163. Voice PJ, Kowalewski M, Eriksson KA (2011) Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J Geol 119(2):109–126. doi:10.1086/658295CrossRefGoogle Scholar
  164. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308(5723):841–844. doi:10.1126/science.1110873CrossRefGoogle Scholar
  165. Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577CrossRefGoogle Scholar
  166. Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239CrossRefGoogle Scholar
  167. Weiss BP, Maloof AC, Tailby N, Ramezani J, Fu RR, Hanus V, Trail D, Watson EB, Harrison TM, Bowring SA, Kirschvink JL, Swanson-Hysell NL, Coe RS (2015) Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo. Earth Planet Sci Lett 430:115–128. doi:10.1016/j.epsl.2015.07.067CrossRefGoogle Scholar
  168. White WM, Klein EM (2014) Composition of the oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Oxford, pp 457–495CrossRefGoogle Scholar
  169. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature 409(6817):175–178CrossRefGoogle Scholar
  170. Willbold M, Hegner E, Stracke A, Rocholl A (2009) Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett 279(1–2):44–52. doi:10.1016/j.epsl.2008.12.029CrossRefGoogle Scholar
  171. Yanagi T, Yamashita K (1994) Genesis of continental-crust under island-arc conditions. Lithos 33(1–3):209–223. doi:10.1016/0024-4937(94)90061-2CrossRefGoogle Scholar
  172. Yuan HL, Gao S, Dai MN, Zong CL, Gunther D, Fontaine GH, Liu XM, Diwu C (2008) Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol 247(1–2):100–118. doi:10.1016/j.chemgeo.2007.10.003CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Earth ScienceUniversity of CaliforniaSanta BarbaraUSA