Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Samarium

  • Michael Bizimis
  • Howie Scher
Living reference work entry

Later version available View entry history

DOI: https://doi.org/10.1007/978-3-319-39193-9_136-1

Properties

Element Data

Atomic symbol: Sm

Atomic number: 62

Atomic weight: 150.363(8)

Isotopes and abundances:

Sm 3.08(1)

Sm 15.02(5)%

Sm 11.25(3)%

Sm 13.83(4)%

Sm 7.35(2)%

Sm 26.74(3)%

Sm 22.73(5)%

1 atm melting point: 1345 K

1 atm boiling point: 2067 K

Common valences: 3+

Ionic radii: 108 pm (eightfold coordination)

Pauling electronegativity: 1.17

First ionization potential: 5.6437 eV

Chondritic (CI) abundance: 0.148 ppm

Silicate Earth abundance: 0.406 ppm

Crustal abundance: 3.9 ppm

Seawater abundance: 0.1–20 pmol/kg

Core abundance: ~0

History and Use

Samarium was first discovered by Swiss chemist Marc Delafontaine in 1878 who named it “decipium,” later proven to be a mixture of samarium and other rare earths. French chemist Paul-Emile Lecoq de Boisbaudran isolated samarium in 1879. It was purified from the mineral samarskite named for Colonel Vasili von Samarsky, a Russian mine official (Holden, 2001). Commercial applications of Sm include samarium-cobalt magnets, which have a...

Keywords

Carbon Capture Ridge Basalt Painful Bone Metastasis Chondrite Meteorite 146Sm 146Sm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Alibo, D. S., and Nozaki, Y., 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372.CrossRefGoogle Scholar
  2. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518.CrossRefGoogle Scholar
  3. Holden, N. E., 2001. History of the origin of the chemical elements and their discoverers. BNL-NCS-63859-01/10-REV, Brookhaven National Laboratory, http://www.nndc.bnl.gov/publications/preprints/origindc.pdf.
  4. Kinoshita, N., Paul, M., Kashiv, Y., Collon, P., Deibel, C. M., DiGiovine, B., Greene, J. P., Henderson, D. J., Jiang, C. L., Marley, S. T., Nakanishi, T., Pardo, R. C., Rehm, K. E., Robertson, D., Scott, R., Schmitt, C., Tang, X. D., Vondrasek, R., and Yokoyama, A., 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science, 335(6076), 1614–1617.CrossRefGoogle Scholar
  5. Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B., and Clayton, R. N., 2014. Samarium–neodymium chronology and rubidium–strontium systematics of an Allende calcium–aluminum-rich inclusion with implications for 146Sm half-life. Earth and Planetary Science Letters, 405, 15–24.CrossRefGoogle Scholar
  6. Rudnick, R. L., and Gao, S., 2003. The composition of the continental crust. In Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 3, pp. 1–64.CrossRefGoogle Scholar
  7. Salters, V. J. M., and Stracke, A. 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 5(Q05004), doi:10.1029/2003GC000597.Google Scholar
  8. Salters, V. J. M., Longhi, J. E., Bizimis, M. 2002. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochemistry Geophysics Geosystems, 3(7), doi: 10.1029/2001GC000148.Google Scholar
  9. Schijf, J., Christenson, E. A., and Byrne, R. H., 2015. YREE scavenging in seawater: a new look at an old model. Marine Chemistry, 177(Part 3), 460–471.CrossRefGoogle Scholar
  10. Serafini, A. N., Houston, S. J., Resche, I., Quick, D. P., Grund, F. M., Ell, P. J., Bertrand, A., Ahmann, F. R., Orihuela, E., Reid, R. H., Lerski, R. A., Collier, B. D., McKillop, J. H., Purnell, G. L., Pecking, A. P., Thomas, F. D., and Harrison, K. A., 1998. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. Journal of Clinical Oncology, 16(4), 1574–1581.Google Scholar
  11. Sonke, J. E., and Salters, V. J. M., 2006. Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochimica et Cosmochimica Acta, 70(6), 1495–1506.CrossRefGoogle Scholar
  12. Tachikawa, K., Jeandel, C., and Roy-Barman, M., 1999. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth and Planetary Science Letters, 170(4), 433–446.CrossRefGoogle Scholar
  13. U.S. Geological Survey, 2015. Mineral commodity summaries 2015: U.S. Geological Survey, 196 p.,http://dx.doi.org/10.3133/70140094.Google Scholar
  14. Workman, R. K., and Hart, S. R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Earth and Ocean SciencesUniversity of South CarolinaColumbiaUSA