Encyclopedia of Geochemistry

Editors: William M. White

Neodymium Isotopes

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_124-1

Introduction

Isotope ratios of Nd are key geochemical tracers for unraveling the compositional evolution of terrestrial planets, as well as an important geochronometer. Neodymium has seven natural isotopes: 142Nd (27.153 %), 143Nd (12.173 %), 144Nd (23.798 %), 145Nd (8.293 %), 146Nd (17.189 %), 148Nd (5.756 %), and 150Nd (5.638 %) (Meija et al., 2016). 147Sm decays to 143Nd through α-decay with a half-life of 1.06 × 1011 year that corresponds to a decay constant (λSm147) of 6.54 × 10−12 year−1. 146Sm decays to 142Nd through α-decay and a half-life estimated between 68 × 106 year (Kinoshita et al., 2012) and 103 × 106 year (Meissner et al., 1987; Marks et al., 2014). Due to its slightly lower ionic radius , Sm is generally more compatible than Nd in the Earth’s mantle. The fractionation of Sm from Nd during melting and crystallization processes changes the Sm/Nd ratios in minerals, which, over time, will change the relative abundance of 143Nd and 142Nd. These changes in Nd isotopes are...

This is a preview of subscription content, log in to check access

References

  1. Abbott, A. N., Haley, B. A., McManus, J., and Reimers, C. E., 2015. The sedimentary flux of dissolved rare earth elements to the ocean. Geochimica et Cosmochimica Acta, 154, 186–200.CrossRefGoogle Scholar
  2. Allègre, C. J., and Rousseau, D., 1984. The growth of the continents through geological time studied by Nd isotope analysis of shales. Earth and Planetary Science Letters, 67, 19–34.CrossRefGoogle Scholar
  3. Amakawa, H., et al., 2013. Neodymium isotopic composition and concentration in the Southwest Pacific Ocean. Geochemical Journal, 47, 409–422.CrossRefGoogle Scholar
  4. Arndt, N. T., and Goldstein, S. L., 1987. Use and abuse of crust-formation ages. Geology, 15, 893–895.CrossRefGoogle Scholar
  5. Basak, C., et al., 2015. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific. Earth and Planetary Science Letters, 419, 211–221.CrossRefGoogle Scholar
  6. Baxter, E., and Scherer, E., 2013. Garnet: timekeeper of tectonometamorphic processes. Elements, 9, 433–438.CrossRefGoogle Scholar
  7. Bennett, V. C., Nutmna, A. P., and McCulloch, T. M., 1993. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth and Planetary Science Letters, 119, 299–317.CrossRefGoogle Scholar
  8. Bennett, V. C., Brandon, A. D., and Nutman, A. P., 2007. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science, 318(5858), 1907–1910.CrossRefGoogle Scholar
  9. Blichert-Toft, J., and Puchtel, I. S., 2010. Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth and Planetary Science Letters, 297(3–4), 598–606.CrossRefGoogle Scholar
  10. Bourdon, B., Touboul, M., Caro, G., and Kleine, T., 2008. Early differentiation of the Earth and the Moon. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1883), 4105–4128.CrossRefGoogle Scholar
  11. Bouvier, A., Vervoort, J. D., and Patchett, P. J., 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57.CrossRefGoogle Scholar
  12. Boyet, M., and Carlson, R. W., 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate earth. Science, 309, 576–581.CrossRefGoogle Scholar
  13. Burkhardt, C., et al., 2016. Meteoritic Nd isotope constraints on the origin and composition of the Earth. Lunar and Planetary Science Conference, 47, 1908.Google Scholar
  14. Carlson, R. W., and Boyet, M., 2009. Short-lived radionuclides as monitors of early crust–mantle differentiation on the terrestrial planets. Earth and Planetary Science Letters, 279(3–4), 147–156.CrossRefGoogle Scholar
  15. Carlson, R. W., Boyet, M., and Horan, M., 2007. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation. Science, 316(5828), 1175–1178.CrossRefGoogle Scholar
  16. Caro, G., 2011. Early silicate Earth differentiation. Annual Review of Earth and Planetary Sciences, 39(1), 31–58.CrossRefGoogle Scholar
  17. Caro, G., and Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochimica et Cosmochimica Acta, 74(11), 3333–3349.CrossRefGoogle Scholar
  18. Caro, G., Bourdon, B., Birck, J.-L., and Moorbath, S., 2006. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochimica et Cosmochimica Acta, 70(1), 164–191.CrossRefGoogle Scholar
  19. Debaille, V., et al., 2013. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth and Planetary Science Letters, 373, 83–92.CrossRefGoogle Scholar
  20. DePaolo, D. J., and Wasserburg, G. J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252.CrossRefGoogle Scholar
  21. Ducea, M. N., et al., 2003. Sm–Nd dating of spatially controlled domains of garnet single crystals: a new method of high-temperature thermochronology. Earth and Planetary Science Letters, 213(1–2), 31–42.CrossRefGoogle Scholar
  22. Frei, R., Polat, A., and Meibom, A., 2004. The Hadean upper mantle conundrum: evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Gy boninite-like metabasalts from the Isua Supracrustal Belt, Greenland. Geochimica et Cosmochimica Acta, 68(7), 1645–1660.CrossRefGoogle Scholar
  23. Fukai, R., and Yokoyama, T., 2016. Nucleosynthetic neodymium isotope anomalies in carbonaceous and ordinary chondrites. Lunar and Planetary Science Conference, 47, 1298.Google Scholar
  24. Gale, A., et al., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518.CrossRefGoogle Scholar
  25. Gannoun, A., Boyet, M., Rizo, H., and El Goresy, A., 2011. 146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proceedings of the National Academy of Sciences, 108(19), 7693–7697.CrossRefGoogle Scholar
  26. Goldstein, S. L., and Hemming, S. R., 2003. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise in Geochemistry, 6, 453–489.CrossRefGoogle Scholar
  27. Greaves, M. J., Elderfield, H., and Sholkovitz, E. R., 1999. Aeolian sources of rare earth elements to the Western Pacific Ocean. Marine Chemistry, 68, 31–38.CrossRefGoogle Scholar
  28. Hamilton, P. J., O’Nions, R. K., Bridgwater, D., and Nutman, A., 1983. Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth and Planetary Science Letters, 62, 263–272.CrossRefGoogle Scholar
  29. Hawkesworth, C. J., and Kemp, A. I. S., 2006. Evolution of the continental crust. Nature, 443, 811–817.CrossRefGoogle Scholar
  30. Hoffmann, J. E., et al., 2011. The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Acta, 75(21), 6610–6628.CrossRefGoogle Scholar
  31. Hofmann, A. W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229.CrossRefGoogle Scholar
  32. Jeandel, C., et al., 2007. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins. Chemical Geology, 239(1–2), 156–164.CrossRefGoogle Scholar
  33. Johannesson, K. H., and Burdige, D. J., 2007. Balancing the global oceanic neodymium budget: evaluating the role of groundwater. Earth and Planetary Science Letters, 253, 129–142.CrossRefGoogle Scholar
  34. Khanna, T., Bizimis, M., Yogodzinski, G., and Mallick, S., 2014. Hafnium–neodymium isotope systematics of the 2.7 Ga Gadwal greenstone terrane, Eastern Dharwar craton, India: implications for the evolution of the Archean depleted mantle. Geochimica et Cosmochimica Acta, 127, 10–24.CrossRefGoogle Scholar
  35. Kinoshita, N., et al., 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the Solar System. Science, 335(6076), 1614–1617.CrossRefGoogle Scholar
  36. Lambelet, M., et al., 2016. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochimica et Cosmochimica Acta, 177, 1–29.CrossRefGoogle Scholar
  37. Ludwig, K., 2003. Isoplot Version 3.00, A Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Spec. Publ. No 4.Google Scholar
  38. Lugmair, G. W., Carlson, R. W., 1978. The Sm–Nd history of KREEP. In Proceedings of the 9th Lunar Planetary Science Conference. Houston, TX, pp. 689–704.Google Scholar
  39. Marks, N. E., et al., 2014. Samarium–neodymium chronology and rubidium–strontium systematics of an Allende calcium–aluminum-rich inclusion with implications for 146Sm half-life. Earth and Planetary Science Letters, 405, 15–24.CrossRefGoogle Scholar
  40. Meija, J., et al., 2016. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 293.Google Scholar
  41. Meissner, F., Schmidt-Ott, W.-D., and Ziegeler, L., 1987. Half-life and α-ray energy of146Sm. Zeitschrift für Physik A Atomic Nuclei, 327(2), 171–174.CrossRefGoogle Scholar
  42. O’Neil, J., Carlson, R. W., Francis, D., and Stevenson, R. K., 2008. Neodymium-142 evidence for Hadean Mafic crust. Science, 321(5897), 1828–1831.CrossRefGoogle Scholar
  43. Piepgras, D. J., and Wasserburg, G. J., 1980. Neodymiun isotopic variations in seawater. Earth and Planetary Science Letters, 50, 128–138.CrossRefGoogle Scholar
  44. Piepgras, D. J., and Wasserburg, G. J., 1982. Isotopic composition of Neodymium in waters from the Drake Passage. Science, 217, 207–214.CrossRefGoogle Scholar
  45. Piepgras, D. J., and Wasserburg, G. J., 1987. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochimica et Cosmochimica Acta, 51, 1257–1271.CrossRefGoogle Scholar
  46. Pin, C., and Zalduegui, J. F. S., 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339, 79–89.CrossRefGoogle Scholar
  47. Pollington, A. D., and Baxter, E. F., 2011. High precision microsampling and preparation of zoned garnet porphyroblasts for Sm–Nd geochronology. Chemical Geology, 281(3–4), 270–282.CrossRefGoogle Scholar
  48. Richard, P. N., Shimizu, N., and Allègre, C. J., 1976. 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters, 31, 269–278.CrossRefGoogle Scholar
  49. Rizo, H., Boyet, M., Blichert-Toft, J., and Rosing, M., 2011. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth and Planetary Science Letters, 312(3–4), 267–279.CrossRefGoogle Scholar
  50. Roy, M., van de Flierdt, T., Hemming, S. R., and Goldstein, S. L., 2007. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the southern ocean. Chemical Geology, 244(3–4), 507–519.CrossRefGoogle Scholar
  51. Shaw, H. F., and Wasserburg, G. J., 1985. Sm-Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochimica et Cosmochimica Acta, 49, 503–518.CrossRefGoogle Scholar
  52. Stichel, T., Frank, M., Rickli, J., and Haley, B. A., 2012. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth and Planetary Science Letters, 317–318, 282–294.CrossRefGoogle Scholar
  53. Stichel, T., et al., 2015. Separating biogeochemical cycling of neodymium from water mass mixing in the Eastern North Atlantic. Earth and Planetary Science Letters, 412, 245–260.CrossRefGoogle Scholar
  54. Tanaka, T., et al., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3–4), 279–281.CrossRefGoogle Scholar
  55. von Blanckenburg, F., 1999. Tracing past ocean circulation? Science, 286(5446), 1862–1863.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Earth and Ocean SciencesUniversity of South CarolinaColumbiaUSA