Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White


  • Michael Bizimis
  • Howie D. Scher
Living reference work entry

Later version available View entry history

DOI: https://doi.org/10.1007/978-3-319-39193-9_123-1

Element Data

Atomic symbol: Nd

Atomic number: 60

Atomic weight: 144.242 g/mole

Isotopes and abundances:

Nd: 27.153 %

Nd: 12.173 %

Nd: 23.798 %

Nd: 8.293 %

Nd: 17.189 %

Nd: 5.756 %

Nd: 5.638 %

1 atm melting point: 1294 K

1 atm boiling point: 3347 K

Common valences: 3+

Ionic radii: 112 pm (eightfold coordination)

Pauling electronegativity: 1.14

First ionization potential: 5.5250 eV

Chondritic (CI) abundance: 0.475 ppm

Silicate Earth abundance: 1.25 ppm

Crustal abundance: 20 ppm

Seawater abundance: 2–60 pmol/kg

Core abundance: ~0


Neodymium (Nd) is a silvery-white-yellow metal with an atomic number (Z) of 60, electronic configuration of [Xe]4f46s2, and atomic weight of 144.242(3) (Meija et al., 2016a, b). It is a group IIIB inner transition element and one of the lanthanide and rare-earth elements. Neodymium is a refractory element , with a melting point of 1294 K, boiling point of 3347 K, and density of 7.01 g/cm3. It is a lithophile element under the Goldschmidt...


Continental Crust Carbon Capture Primitive Mantle Light Rare Earth Solar Nebular 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Argyriades, J., the NEMO Collaboration, et al., 2009. Measurement of the double-beta decay half-life of 150Nd and search for neutrinoless decay modes with the NEMO-3 detector. Physical Review C, 80(3), 032501.CrossRefGoogle Scholar
  2. Arsouze, T., Dutay, J.-C., Lacan, F., and Jeandel, C., 2009. Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model. Biogeosciences, 6, 2829–2846.CrossRefGoogle Scholar
  3. Broecker, W. S., and Peng, T.-H., 1982. Tracers in Sea. Palisades, NY: Eldigio Press, Lamont – Doherty Geological Observatory, 690 pp.Google Scholar
  4. Carlson, R. W., and Boyet, M., 2009. Short-lived radionuclides as monitors of early crust–mantle differentiation on the terrestrial planets. Earth and Planetary Science Letters, 279(3–4), 147–156.CrossRefGoogle Scholar
  5. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518.CrossRefGoogle Scholar
  6. Goldstein, S. L., and Hemming, S. R., 2003. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise in Geochemistry, 6, 453–489.CrossRefGoogle Scholar
  7. Holden N. E., 2001. History of the origin of the chemical elements and their discoverers. BNL-NCS-63859-01/10-REV, Brookhaven National Laboratory, http://www.nndc.bnl.gov/publications/preprints/origindc.pdf.
  8. Kinoshita, N., et al., 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science, 335(6076), 1614–1617, doi:10.1126/science.1215510.CrossRefGoogle Scholar
  9. Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B., and Clayton, R. N., 2014. Samarium–neodymium chronology and rubidium–strontium systematics of an Allende calcium–aluminum-rich inclusion with implications for 146Sm half-life. Earth and Planetary Science Letters, 405, 15–24.CrossRefGoogle Scholar
  10. McDonough, W. F., and Sun, S.-S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  11. McSween, H. Y., and Huss, G. R., 2010. Cosmochemistry. Cambridge, UK: Cambridge University Press, 549 p.CrossRefGoogle Scholar
  12. Meija, J., Coplen Tyler, B., Berglund, M., Brand Willi, A., De Bièvre, P., Gröning, M., Holden Norman, E., Irrgeher, J., Loss Robert, D., Walczyk, T., and Prohaska, T., 2016a. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 265.Google Scholar
  13. Meija, J., Coplen Tyler, B., Berglund, M., Brand Willi, A., De Bièvre, P., Gröning, M., Holden Norman, E., Irrgeher, J., Loss Robert, D., Walczyk, T., and Prohaska, T., 2016b. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88, 293.Google Scholar
  14. Pagano, G., Guida, M., Tommasi, F., and Oral, R., 2015. Health effects and toxicity mechanisms of rare earth elements – Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.CrossRefGoogle Scholar
  15. Palme, H., and O’Neill, H. S. C., 2003. Cosmochemical estimates of mantle composition. Treatise on Geochemistry, 2, 1–38.Google Scholar
  16. Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M., and Op den Camp, H. J. M., 2014. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology, 16(1), 255–264, doi:10.1111/1462-2920.12249.CrossRefGoogle Scholar
  17. Rempfer, J., Stocker, T. F., Joos, F., Dutay, J.-C., and Siddall, M., 2011. Modelling Nd-isotopes with a coarse resolution ocean circulation model: sensitivities to model parameters and source/sink distributions. Geochimica et Cosmochimica Acta, 75(20), 5927–5950.CrossRefGoogle Scholar
  18. Rim, K. T., Koo, K. H., and Park, J. S., 2013. Toxicological evaluations of rare earths and their health impacts to workers: a literature Review. Safety and Health at Work, 4(1), 12–26.CrossRefGoogle Scholar
  19. Rizo, H., Boyet, M., Blichert-Toft, J., O’Neil, J., Rosing, M. T., and Paquette, J.-L., 2012. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, 491(7422), 96–100.CrossRefGoogle Scholar
  20. Rudnick, R. L., and Gao, S., 2003. The composition of the continental crust. In Gao, S. (ed.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 3, pp. 1–64.CrossRefGoogle Scholar
  21. Salters, V. J. M., and Stracke, A., 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 5(Q05004). doi:10.1029/2003GC000597Google Scholar
  22. Schijf, J., Christenson, E. A., and Byrne, R. H., 2015. YREE scavenging in seawater: a new look at an old model. Marine Chemistry, 177(Part 3), 460–471.CrossRefGoogle Scholar
  23. Sonke, J. E., and Salters, V. J. M., 2006. Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochimica et Cosmochimica Acta, 70(6), 1495–1506.CrossRefGoogle Scholar
  24. Tachikawa, K., Jeandel, C., and Roy-Barman, M., 1999. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth and Planetary Science Letters, 170(4), 433–446.CrossRefGoogle Scholar
  25. von Blanckenburg, F., 1999. Tracing past ocean circulation? Science, 286(5446), 1862–1863.CrossRefGoogle Scholar
  26. Wood, B. J., and Blundy, J. D., 2001. The effect of cation charge on crystal-melt partitioning of trace elements. Earth and Planetary Science Letters, 188, 59–71.CrossRefGoogle Scholar
  27. Workman, R. K., and Hart, S. R., 2005. Major and trace element composition of the depleted MORB mantle(DMM). Earth and Planetary Science Letters, 231, 53–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Earth and Ocean SciencesUniversity of South CarolinaColumbiaUSA