Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White


  • Kenneth T. KogaEmail author
  • Estelle F. Rose-KogaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_102-1

Element Data

Atomic symbol: F

Atomic number: 9

Atomic weight: 18.998 g/mol

Isotopes and abundances: 19F 100 %

1 Atm melting point: −219.67 °C

1 Atm boiling point: −188.11 °C

Common valences: −1

Ionic radii: 130 (III), 131 (IV), and 133 (VI), in pm (coordination number)

Pauling electronegativity: 3.98

First ionization potential: 17.4428 eV

Chondritic (CI) abundance: 60.7 μg.g−1

Silicate earth abundance: two estimates – 18 ± 8 and 25 ± 10 μg.g−1

Continental crust abundance ~ 550 μg.g−1

Oceanic crust abundance 130 ~ 1000 (est. 400) μg.g−1

Seawater abundance: 1.3 μg.g−1

Core abundance: considered as 0


In its elemental form, fluorine exists as a diatomic molecule of highly toxic, corrosive, pale yellow gas with a pungent smell in ambient conditions. As the most electronegative element, fluorine is reactive and commonly found in nature as ionic compounds bonded to metal cations or hydrogen. Fluorine can dissolve into solution forming F ions.

History and Use

Fluorite (CaF2) has...


Continental Crust Hydrothermal Fluid Carbon Capture Benthic Foraminifera Fluorine Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Agricola, G., 1556. De re metallica (translated version, Hoover HC, and Hoover LH (1912) De re metallica. Dover: New York).Google Scholar
  2. Akiniwa, K., 1997. Re-examination of acute toxicity of fluoride. Fluoride, 30, 89–104.Google Scholar
  3. Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilu-cis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P. J., Olsson, S. Å., Ottesen, R.-T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., and Tarvainen, T., 2005. Geochemical atlas of Europe. In Salminen, R. (ed.), Part 1: Background Information, Methodology and Maps. Espoo: Geological Survey of Finland.Google Scholar
  4. Beyer, C., Klemme, S., Wiedenbeck, M., Stracke, A., and Vollmer, C., 2012. Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth and Planetary Science Letters, 337, 1–9.CrossRefGoogle Scholar
  5. Clayton, D., 2003. Handbook of Isotopes in Cosmos, Hydrogen to Gallium. Cambridge: Cambridge University Press.Google Scholar
  6. Dalou, C., Le Losq, C., Mysen, B. O., and Cody, G. D., 2015. Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature. American Mineralogist, 100, 2272–2283. doi:10.2138/am-2015-5201.CrossRefGoogle Scholar
  7. Enax, J., Prymak, O., Raabe, D., and Epple, M., 2012. Structure, composition, and mechanical properties of shark teeth. Journal of Structural Biology, 178, 290–299.CrossRefGoogle Scholar
  8. Forestini, M., Goriely, S., and Jorissen, A., 1992. Fluorine production in thermal pulses on the asymptotic giant branch. Astronomy and Astrophysics, 261, 157–163.Google Scholar
  9. Hanley and Koga, (in prep.) Halogens in terrestrial and cosmic geochemical systems: abundances, geochemical behaviors and analytical methods. In Harlov, D. (ed), The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Berlin/Heidelberg: Springer-Verlag.Google Scholar
  10. Klemme, S., 2004. Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology, 32, 441.CrossRefGoogle Scholar
  11. Lodders, K., Palme, H., and Gail, H. P., 2009. Abundances of the elements in the solar system. In Astronomy and Astrophysics. Berlin: Springer, pp. 560–630.Google Scholar
  12. McDonough, W. F., 2003. Compositional model for the Earth’s Core. In Holland, H. D., and Turrekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 2, pp. 547–568.CrossRefGoogle Scholar
  13. Moissan, H., 1886. Sur la décomposition de l’acide fluorhydrique par un courant électrique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 103, 202–205.Google Scholar
  14. Mungall, J. E., and Brenan, J. M., 2003. Experimental evidence for the chalcophile behavior of the halogens. The Canadian Mineralogist, 41, 207–220.CrossRefGoogle Scholar
  15. Rosenthal, Y., Boyle, E. A., and Slowey, N., 1997. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochimica et Cosmochimica Acta, 61, 3633–3643.CrossRefGoogle Scholar
  16. Rudnick, R. L., and Gao, S., 2003. Composition of the Continental Crust. In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 3, pp. 1–64.CrossRefGoogle Scholar
  17. Stix, J., Layne, G. D., and Spell, T. L., 1995. The behavior of light lithophile and halogen elements in felsic magma: geochemistry of the post-caldera Valles Rhyolites, Jemez Mountains Volcanic Field, New Mexico. Journal of Volcanology and Geothermal Research, 67, 61–77.CrossRefGoogle Scholar
  18. Symonds, R. B., Rose, W. I., Bluth, G. J., and Gerlach, T. M., 1994. Volcanic-gas studies; methods, results, and applications. Reviews in Mineralogy and Geochemistry, 30(1), 1–66.Google Scholar
  19. Taylor, G. J., 2013. The bulk composition of Mars. Chemie der Erde-Geochemistry, 73, 401–420.CrossRefGoogle Scholar
  20. Teague, A. J., Hanley, J., Seward, T. M., and Reutten, F., 2011. Trace-element distribution between coexisting aqueous fumarole condensates and natrocarbonatite lavas at Oldoinyo Lengai volcano, Tanzania. Geological Society of America Special Papers, 478, 159–172.CrossRefGoogle Scholar
  21. Wasson, J. T., and Kallemeyn, G. W., 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 325, 535–544.CrossRefGoogle Scholar
  22. Woosley, S. E., and Haxton, W. C., 1988. Supernova neutrinos, neutral currents and the origin of fluorine. Nature, 334, 45–47.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal – CNRSClermont-FerrandFrance