Pancreatic Islet Beta-Cell Replacement Strategies

  • J. Jason CollierEmail author
  • Susan J. Burke
Living reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)


In this chapter, we outline some of the basic aspects of autoimmunity that leads to the loss of both function and quantity of pancreatic islet β-cells during progression to type 1 diabetes. Then we focus on strategies designed to promote replacement of pancreatic β-cells, either by whole pancreas or islet transplantation from cadaveric donors. In addition, approaches to engineer large populations of β-cells from embryonic or induced pluripotent stem cells as a replacement alterative to cadaveric tissue are considered. Understanding the nuances of the endocrine lineage and its developmental features has been supported by mouse genetics, with results showing promise that other endocrine cell types can become “reprogrammed” into insulin-positive cells. Thus, at the present time, several distinct approaches have the potential to drive novel therapeutic interventions designed to replace β-cells lost due to autoimmune mechanisms. In an idyllic scenario, the best approach(es) will offer strong salutary benefit with reduced or no side effects, allowing for long-term (e.g., decades), if not permanent, functioning of the transplanted tissue. The ultimate goal is full correction of hyperglycemia with minimal potential for hypoglycemic events.


  1. Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO (2015) New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 58(10):2218–2228CrossRefGoogle Scholar
  2. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82CrossRefGoogle Scholar
  3. Axelrod DA, Sung RS, Meyer KH, Wolfe RA, Kaufman DB (2010) Systematic evaluation of pancreas allograft quality, outcomes and geographic variation in utilization. Am J Transplant 10(4):837–845CrossRefGoogle Scholar
  4. Ballinger WF, Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surgery 72(2):175–186Google Scholar
  5. Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7(5):465–480Google Scholar
  6. Bellin MD, Clark P, Usmani-Brown S, Dunn TB, Beilman GJ, Chinnakotla S, Pruett TL, Ptacek P, Hering BJ, Wang Z, Gilmore T, Wilhelm JJ, Hodges JS, Moran A, Herold KC (2017) Unmethylated insulin DNA is elevated after total pancreatectomy with islet autotransplantation: assessment of a novel beta cell marker. Am J Transplant 17(4):1112–1118CrossRefGoogle Scholar
  7. Burke SJ, Karlstad MD, Collier JJ (2016) Pancreatic islet responses to metabolic trauma. Shock 46(3):230–238CrossRefGoogle Scholar
  8. Chakravarthy H, Gu X, Enge M, Dai X, Wang Y, Damond N, Downie C, Liu K, Wang J, Xing Y, Chera S, Thorel F, Quake S, Oberholzer J, MacDonald PE, Herrera PL, Kim SK (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25(3):622–634CrossRefGoogle Scholar
  9. Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocr Rev 16(2):117–142Google Scholar
  10. Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL (2014) Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514(7523):503–507CrossRefGoogle Scholar
  11. Collier JJ, Scott DK (2004) Sweet changes: glucose homeostasis can be altered by manipulating genes controlling hepatic glucose metabolism. Mol Endocrinol 18(5):1051–1063CrossRefGoogle Scholar
  12. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46CrossRefGoogle Scholar
  13. Fiorina P, Shapiro AM, Ricordi C, Secchi A (2008) The clinical impact of islet transplantation. Am J Transplant 8(10):1990–1997CrossRefGoogle Scholar
  14. Fisher MM, Watkins RA, Blum J, Evans-Molina C, Chalasani N, DiMeglio LA, Mather KJ, Tersey SA, Mirmira RG (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64(11):3867–3872CrossRefGoogle Scholar
  15. Girlanda R (2016) Deceased organ donation for transplantation: challenges and opportunities. World J Transplant 6(3):451–459CrossRefGoogle Scholar
  16. Grant RW, Dixit VD (2015) Adipose tissue as an immunological organ. Obesity (Silver Spring) 23(3):512–518CrossRefGoogle Scholar
  17. Gruessner RW, Gruessner AC (2013a) The current state of pancreas transplantation. Nat Rev Endocrinol 9(9):555–562CrossRefGoogle Scholar
  18. Gruessner RW, Gruessner AC (2013b) Pancreas transplant alone: a procedure coming of age. Diabetes Care 36(8):2440–2447CrossRefGoogle Scholar
  19. Henquin JC (2011) The dual control of insulin secretion by glucose involves triggering and amplifying pathways in beta-cells. Diabetes Res Clin Pract 93(Suppl 1):S27–S31CrossRefGoogle Scholar
  20. Herold KC, Usmani-Brown S, Ghazi T, Lebastchi J, Beam CA, Bellin MD, Ledizet M, Sosenko JM, Krischer JP, Palmer JP, Type 1 Diabetes TrialNet Study Group (2015) β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125(3):1163–1173CrossRefGoogle Scholar
  21. Hohmeier HE, Newgard CB (2004) Cell lines derived from pancreatic islets. Mol Cell Endocrinol 228(1–2):121–128CrossRefGoogle Scholar
  22. Humar A, Kandaswamy R, Granger D, Gruessner RW, Gruessner AC, Sutherland DE (2000) Decreased surgical risks of pancreas transplantation in the modern era. Ann Surg 231(2):269–275CrossRefGoogle Scholar
  23. Israni AK, Skeans MA, Gustafson SK, Schnitzler MA, Wainright JL, Carrico RJ, Tyler KH, Kades LA, Kandaswamy R, Snyder JJ, Kasiske BL (2014) OPTN/SRTR 2012 annual data report: pancreas. Am J Transplant 14(Suppl 1):45–68CrossRefGoogle Scholar
  24. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298(5593):601–604CrossRefGoogle Scholar
  25. Johnson JD (2016) The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 59(10):2047–2057CrossRefGoogle Scholar
  26. Juliana CA, Yang J, Rozo AV, Good A, Groff DN, Wang SZ, Green MR, Stoffers DA (2017) ATF5 regulates beta-cell survival during stress. Proc Natl Acad Sci USA 114(6):1341–1346CrossRefGoogle Scholar
  27. Kemp CB, Knight MJ, Scharp DW, Lacy PE, Ballinger WF (1973) Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature 244(5416):447CrossRefGoogle Scholar
  28. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556CrossRefGoogle Scholar
  29. Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16(1):35–39CrossRefGoogle Scholar
  30. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679CrossRefGoogle Scholar
  31. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10(7):501–513CrossRefGoogle Scholar
  32. Li K, Zhu S, Russ HA, Xu S, Xu T, Zhang Y, Ma T, Hebrok M, Ding S (2014) Small molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages. Cell Stem Cell 14(2):228–236CrossRefGoogle Scholar
  33. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15(5):741–747CrossRefGoogle Scholar
  34. Lillehei RC, Simmons RL, Najarian JS, Goetz FC (1970a) Pancreatico-duodenal and renal allotransplantation in juvenile onset, insulin dependent, diabetes mellitus with terminal nephropathy. Langenbecks Arch Chir 326(2):88–105CrossRefGoogle Scholar
  35. Lillehei RC, Simmons RL, Najarian JS, Weil R, Uchida H, Ruiz JO, Kjellstrand CM, Goetz FC (1970b) Pancreatico-duodenal allotransplantation: experimental and clinical experience. Ann Surg 172(3):405–436CrossRefGoogle Scholar
  36. Ludwig B, Ludwig S, Steffen A, Saeger HD, Bornstein SR (2010) Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diab Rep 10(6):506–511CrossRefGoogle Scholar
  37. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394CrossRefGoogle Scholar
  38. Mathieu C, Gillard P, Benhalima K (2017) Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol 13(7):385–399CrossRefGoogle Scholar
  39. McCluskey JT, Hamid M, Guo-Parke H, McClenaghan NH, Gomis R, Flatt PR (2011) Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion. J Biol Chem 286(25):21982–21,992CrossRefGoogle Scholar
  40. Menger MD, Jaeger S, Walter P, Feifel G, Hammersen F, Messmer K (1989) Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 38(Suppl 1):199–201CrossRefGoogle Scholar
  41. Miralles F, Serup P, Cluzeaud F, Vandewalle A, Czernichow P, Scharfmann R (1999) Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. Dev Dyn 214(2):116–126CrossRefGoogle Scholar
  42. Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Alvarez N, Jun HS, Westerman KA, Noguchi H, Lakey JR, Leboulch P, Tanaka N, Yoon JW (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23(10):1274–1282CrossRefGoogle Scholar
  43. Oleson BJ, McGraw JA, Broniowska KA, Annamalai M, Chen J, Bushkofsky JR, Davis DB, Corbett JA, Mathews CE (2015) Distinct differences in the responses of the human pancreatic beta-cell line EndoC-betaH1 and human islets to proinflammatory cytokines. Am J Physiol Regul Integr Comp Physiol 309(5):R525–R534CrossRefGoogle Scholar
  44. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22(15):1998–2021CrossRefGoogle Scholar
  45. Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662CrossRefGoogle Scholar
  46. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600CrossRefGoogle Scholar
  47. Ravassard P, Emilie B-N, Hazhouz Y, Pechberty S, Mallet J, Czernichow P, Scharfmann R (2009) A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One 4(3):e4731CrossRefGoogle Scholar
  48. Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, Scharfmann R (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597CrossRefGoogle Scholar
  49. Ricordi C, Finke EH, Dye ES, Socci C, Lacy PE (1988a) Automated isolation of mouse pancreatic islets. Transplantation 46(3):455–457CrossRefGoogle Scholar
  50. Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW (1988b) Automated method for isolation of human pancreatic islets. Diabetes 37(4):413–420CrossRefGoogle Scholar
  51. Robertson RP, Davis C, Larsen J, Stratta R, Sutherland DE, American Diabetes Association (2006) Pancreas and islet transplantation in type 1 diabetes. Diabetes Care 29(4):935CrossRefGoogle Scholar
  52. Rorsman P, Ashcroft FM (2018) Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214CrossRefGoogle Scholar
  53. Roth J, Qureshi S, Whitford I, Vranic M, Kahn CR, Fantus IG, Dirks JH (2012) Insulin’s discovery: new insights on its ninetieth birthday. Diabetes Metab Res Rev 28(4):293–304CrossRefGoogle Scholar
  54. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069CrossRefGoogle Scholar
  55. Sander M, German MS (1997) The beta cell transcription factors and development of the pancreas. J Mol Med (Berl) 75(5):327–340CrossRefGoogle Scholar
  56. Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 9(1):e1003274CrossRefGoogle Scholar
  57. Scharfmann R, Didiesheim M, Richards P, Chandra V, Oshima M, Albagli O (2016) Mass production of functional human pancreatic beta-cells: why and how? Diabetes Obes Metab 18(Suppl 1):128–136CrossRefGoogle Scholar
  58. Scharp DW, Lacy PE, Santiago JV, McCullough CS, Weide LG, Falqui L, Marchetti P, Gingerich RL, Jaffe AS, Cryer PE et al (1990) Insulin independence after islet transplantation into type I diabetic patient. Diabetes 39(4):515–518CrossRefGoogle Scholar
  59. Shapiro AM, Pokrywczynska M, Ricordi C (2017) Clinical pancreatic islet transplantation. Nat Rev Endocrinol 13(5):268–277CrossRefGoogle Scholar
  60. Sharma RB, O’Donnell AC, Stamateris RE, Ha B, McCloskey KM, Reynolds PR, Arvan P, Alonso LC (2015) Insulin demand regulates beta cell number via the unfolded protein response. J Clin Invest 125(10):3831–3846CrossRefGoogle Scholar
  61. Sklenarova J, Petruzelkova L, Kolouskova S, Lebl J, Sumnik Z, Cinek O (2017) Glucokinase gene may be a more suitable target than the insulin gene for detection of beta cell death. Endocrinology 158(7):2058–2065CrossRefGoogle Scholar
  62. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162CrossRefGoogle Scholar
  63. Staeva TP, Chatenoud L, Insel R, Atkinson MA (2013) Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 62(1):9–17CrossRefGoogle Scholar
  64. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546Google Scholar
  65. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  66. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154CrossRefGoogle Scholar
  67. Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Kirstine Ringgaard A, Ingvorsen C, Winkel L, Kalisz M, Dalgaard K, Bruun C, Fels JJ, Helgstrand C, Hastrup S, Oberg FK, Vernet E, Sandrini MPB, Shaw AC, Jessen C, Gronborg M, Hald J, Willenbrock H, Madsen D, Wernersson R, Hansson L, Jensen JN, Plesner A, Alanentalo T, Petersen MBK, Grapin-Botton A, Honore C, Ahnfelt-Ronne J, Hecksher-Sorensen J, Ravassard P, Madsen OD, Rescan C, Frogne T (2018) The EndoC-betaH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab 8:144–157CrossRefGoogle Scholar
  68. Wallberg M, Cooke A (2013) Immune mechanisms in type 1 diabetes. Trends Immunol 34(12):583–591CrossRefGoogle Scholar
  69. White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269(1):1–4Google Scholar
  70. Williams P (1894) Notes on diabetes treated with extract and by grafts of sheep’s pancreas. BMJ 2:1303–1304Google Scholar
  71. Zhang N, Richter A, Suriawinata J, Harbaran S, Altomonte J, Cong L, Zhang H, Song K, Meseck M, Bromberg J, Dong H (2004) Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53(4):963–970CrossRefGoogle Scholar
  72. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Basic Sciences/Islet BiologyPennington Biomedical Research CenterBaton RougeUSA
  2. 2.Basic Sciences/ImmunogeneticsPennington Biomedical Research CenterBaton RougeUSA

Personalised recommendations