Skip to main content

The Evolution of Branching in Land Plants: Between Conservation and Diversity

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

The evolution of branching was pivotal to the diversification of plant architecture, providing ways to colonize the environment and optimize resource acquisition both above and below ground. Fossil and phylogenetic evidence indicates that branching evolved independently in the two generations of the land plant life cycle. In this chapter, I focus on shoot systems and discuss two contrasting patterns, occurring at different levels: conservation and diversity. I show that two similar branching modes, terminal and lateral, are found across extant and extinct land plant lineages. Despite conservation of gross morphology, branching morphogenesis is highly disparate at the cellular level and is orchestrated in various manners between and within lineages. In contrast, the molecular mechanisms underpinning branch development could be largely shared among land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baxter R (1959) A new Cordaitean stem with paired axillary branches. Am J Bot 46:163–169

    Article  Google Scholar 

  • Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD et al (2014) Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol 24:2776–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier J (1973) Recherches sur la structure et le développement de l’apex du gamétophyte feuillé des mousses. Revue bryologique et lichénologique 38:421–551

    Google Scholar 

  • Bierhorst DW (1977) On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. Am J Bot 64:125–152

    Article  Google Scholar 

  • Burgeff H (1943) Genetische Studien an Marchantia. Verlag von Gustav Fischer, Jena, pp 1–12

    Google Scholar 

  • Burian A, de Reuille PB, Kuhlemeier C (2016) Patterns of stem cell divisions contribute to plant longevity. Curr Biol 26:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Christenhusz M, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217

    Article  Google Scholar 

  • Cline MG (1996) Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann Bot 78:1–12

    Article  Google Scholar 

  • Coudert Y, Palubicki W, Ljung K, Novák O, Leyser O, Harrison CJ (2015) Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife Sci 4:2061

    Google Scholar 

  • Coudert Y, Bell NE, Edelin C, Harrison CJ (2017) Multiple innovations underpinned branching form diversification in mosses. New Phytol 22:810

    Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Edwards D (2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts. Trans R Soc Edinb Earth Sci 94:397–410

    Article  Google Scholar 

  • Fink S (1984) Some cases of delayed or induced development of axillary buds from persisting detached meristems in conifers. Am J Bot 71:44–51

    Article  Google Scholar 

  • Galtier J (1999) Contrasting diversity of branching patterns in early ferns and early seed plants. In: Kurmann MH, Hemsley AR (eds) The evolution of plant architecture. Royal Botanic Gardens, Kew, pp 51–64

    Google Scholar 

  • Giesen P, Berry CM (2013) Reconstruction and growth of the early tree calamophyton (pseudosporochnales, cladoxylopsida) based on exceptionally complete specimens from Lindlar, Germany (mid- Devonian): organic connection of calamophyton branches and duisbergia trunks. Int J Plant Sci 174:1–23

    Article  Google Scholar 

  • Goebel K (1905). Organography of plants especially of the archegoniatae and spermophyta. Part II. Special Organography, Oxford: Clarendon Press. pp 1–10

    Google Scholar 

  • Gola EM (2014) Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front Plant Sci 5:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison CJ (2016) Auxin transport in the evolution of branching forms. New Phytol 215:545–551

    Article  PubMed  Google Scholar 

  • Harrison CJ, Rezvani M, Langdale JA (2007) Growth from two transient apical initials in the meristem of Selaginella Kraussiana. Development 134:881–889

    Article  CAS  PubMed  Google Scholar 

  • Hébant-Mauri R (1984) Branching patterns in Trichomanes and Cardiomanes (hymenophyllaceous ferns). Can J Bot 62:1336–1343

    Article  Google Scholar 

  • Hébant-Mauri R (1993) Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Can J Bot 71:1612–1624

    Article  Google Scholar 

  • Imaichi R (1984) Developmental anatomy of the shoot apex of leptosporangiate ferns. I Leaf ontogeny and shoot branching of Dennstaedtia scabra. J Jap Bot 59:367–379

    Google Scholar 

  • Kasper AE Jr, Andrews HN Jr (1972) Pertica, a new genus of Devonian plants from northern Maine. Am J Bot 59:897

    Article  Google Scholar 

  • Kebrom T, Spielmeyer W, Finnegan E (2012) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48

    Article  PubMed  Google Scholar 

  • Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Berthaud B, Scheckler SE, Wendt J (1999) Archaeopteris is the earliest known modern tree. Nature 398:700

    Article  CAS  Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511

    Article  CAS  PubMed  Google Scholar 

  • Schuster RM (1984) Morphology, phylogeny and classification of the Anthocerotae. New Man Bryol 2:1071–1092. (RM Schuster, ed)

    Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Stahl Y, Simon R (2010) Plant primary meristems: shared functions and regulatory mechanisms. Curr Opin Plant Biol 13:53–58

    Article  CAS  PubMed  Google Scholar 

  • Stotler B (1972) Morphogenetic patterns of branch formation in the leavy Hepaticae: a resume. Bryologist 75:381–403

    Google Scholar 

  • Sussex IM, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4:33–37

    Article  CAS  PubMed  Google Scholar 

  • Thimann K, Skoog F (1933) Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci U S A 19:714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas BA (1978) Carboniferous lepidodendraceae and lepidocarpaceae. Bot Rev 44:321–364

    Article  Google Scholar 

  • Tomescu AMF (2009) Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci 14:5–12

    Article  CAS  PubMed  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci 111:E4859–E4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful to Jill Harrison, Florian Jabbour and Jeremy Solly for helpful suggestions and proofreading the manuscript. I thank the CNRS (ATIP-Avenir programme) and the Natural History Museum Paris (ATM programme) for funding research in my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoan Coudert .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Coudert, Y. (2017). The Evolution of Branching in Land Plants: Between Conservation and Diversity. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics