Evolution and Development of the Vertebrate Cranium

  • Shigeru KurataniEmail author
Living reference work entry


The cranium represents a derived trait that defines vertebrates; two different cell lineages, the NC and the mesoderm, are involved in its development. Functionally, the cranium can be divided into the neurocranium and the viscerocranium. However, this division does not reflect the developmental origins of the cells in jawed vertebrates. Developmental specification of the cranial primordium is mediated by coordinated expression of homeobox genes, established through tissue interactions. Comparison with cyclostome embryonic patterns shows that the cranium of jawed vertebrates appears to have undergone a series of changes in developmental program, making this structure highly complicated.


Cranium Verterates Evolution Development 


  1. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of the skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429PubMedGoogle Scholar
  2. Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM (1998) Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 125:3445–3459PubMedGoogle Scholar
  3. Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM (2002) Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning facial skeleton in the vertebrate head. Development 129:1061–1073PubMedGoogle Scholar
  4. Davidian A, Malashichev Y (2013) Dual embryonic origin of the hyobranchial apparatus in the Mexican axolotl (Ambystoma mexicanum). Int J Dev Biol 57:821–828CrossRefGoogle Scholar
  5. De Beer GR (1937) The development of the vertebrate skull. Oxford University Press, OxfordGoogle Scholar
  6. Depew MJ, Lufkin T, Rubenstein JL (2002) Specification of jaw subdivisions by Dlx genes. Science 298:371–373CrossRefGoogle Scholar
  7. Dupret V, Sanchez S, Goujet D, Tafforeau P, Ahlberg PE (2014) A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507:500–503CrossRefGoogle Scholar
  8. Gaupp E (1902) Über die Ala temporalis des Säugerschädels und die Regio orbitalis einiger anderer Wirbeltierschädels. Anat Heft 15:433–595Google Scholar
  9. Gregory WK (1935) ‘Williston’s law’ relating to the evolution of skull bones in the vertebrates. Am J Phys Anthropol 20:123–152CrossRefGoogle Scholar
  10. Gross JB, Hanken J (2008) Review of fate-mapping studies of osteogenic cranial neural crest in vertebrates. Dev Biol 317:389–400CrossRefGoogle Scholar
  11. Hall BK (1999) The neural crest in development and evolution. Springer, New YorkCrossRefGoogle Scholar
  12. Hanken J, Hall BK (eds) (1993) The skull, vol 1–3. University of Chicago Press, ChicagoGoogle Scholar
  13. Hirasawa T, Kuratani S (2015) Evolution of the vertebrate skeleton – morphology, embryology and development. Zool Lett 1:2CrossRefGoogle Scholar
  14. Hunt P, Krumlauf R (1991) Deciphering the Hox code: clues to patterning branchial regions of the head. Cell 66:1075–1078CrossRefGoogle Scholar
  15. Jarvik E (1980) Basic structure and evolution of vertebrates, vol 2. Academic, New YorkGoogle Scholar
  16. Jollie MT (1977) Segmentation of the vertebrate head. Am Zool 17:323–333CrossRefGoogle Scholar
  17. Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, Fisher S (2012) Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 7:e47394CrossRefGoogle Scholar
  18. Kitazawa T, Takechi M, Hirasawa T, Hirai T, Narboux-Nême N, Kume H, Oikawa S, Maeda K, Miyagawa-Tomita S, Kurihara Y, Hitomi J, Levi G, Kuratani S, Kurihara H (2015) Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nat Commun 6:6853CrossRefGoogle Scholar
  19. Koyabu D, Maier W, Sánchez-Villagra MR (2012) Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. Proc Natl Acad Sci 109:14075–14080CrossRefGoogle Scholar
  20. Kuratani S (2012) Evolution of the vertebrate jaw from developmental perspectives. Evol Dev 14:76–92CrossRefGoogle Scholar
  21. Kuratani S (2013) Evolution. A muscular perspective on vertebrate evolution. Science 341:139–140CrossRefGoogle Scholar
  22. Kuratani S, Ahlberg PE (2018) Evolution of the vertebrate neurocranium: problems of the premandibular domain and trabecula. Zool Lett 4:1CrossRefGoogle Scholar
  23. Le Douarin NM (1982) The neural crest. Cambridge University Press, CambridgeGoogle Scholar
  24. McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM (2008) Development and tissue origins of the mammalian cranial base. Dev Biol 322:121–132CrossRefGoogle Scholar
  25. McCauley DW, Bronner-Fraser M (2003) Neural crest contributions to the lamprey head. Development 130:2317–2327CrossRefGoogle Scholar
  26. Noden DM (1984) The use of chimeras in analyses of craniofacial development. In: Chimeras in developmental biology. Academic, London, pp 241–280Google Scholar
  27. Oisi Y, Ota KG, Fujimoto S, Kuratani S (2013) Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates. Zool Sci 30:944–961CrossRefGoogle Scholar
  28. Ota GK, Kuratani S (2009) Evolutionary origin of bone and cartilage in vertebrates. In: Pourquié O (ed) The skeletal system Cold Spring Harbor monograph series, vol 53. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–18Google Scholar
  29. Portmann A (1976) Einführung in die vergleichende Morphologie der Wirbeltiere, 5th edn. Schwabe & Co, BaselGoogle Scholar
  30. Pradel A, Maisey JG, Tafforeau P, Mapes RH, Mallatt J (2014) A Palaeozoic shark with osteichthyan-like branchial arches. Nature 509:608–611CrossRefGoogle Scholar
  31. Reichert KB (1837) Über die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Arch Anat Physiol Wiss Med 1837:120–220Google Scholar
  32. Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P (1993) Homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349CrossRefGoogle Scholar
  33. Schneider RA, Helms JA (2003) The cellular and molecular origins of beak morphology. Science 299:55–58CrossRefGoogle Scholar
  34. Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku K (2013) The Dlx genes as clues for vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 24:110–118CrossRefGoogle Scholar
  35. Zhu M, Yu XB, Ahlberg PE, Choo B, Lu J, Qiao T, Qu QM, Zhao WJ, Jia LT, Blom H, Zhu YA (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–193CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory for Evolutionary MorphologyRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
  2. 2.Evolutionary Morphology LaboratoryRIKEN Cluster for Pioneering Research (CPR)KobeJapan

Section editors and affiliations

  • Shigeru Kuratani
    • 1
    • 2
  1. 1.Laboratory for Evolutionary MorphologyRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
  2. 2.Evolutionary Morphology LaboratoryRIKEN Cluster for Pioneering Research (CPR)KobeJapan

Personalised recommendations