Allograft Use in Modern Spinal Surgery

  • Matthew N. Scott-YoungEmail author
  • Mario G. T. Zotti
Living reference work entry


Allograft use continues to be important in modern spinal surgery due to its abundant supply, ability to customize to shape, and avoidance of donor site morbidity. However, surgeons must be aware of the limitations of the grafts when used in isolation and how to obtain bony healing. These limitations include subsidence from altered mechanical properties, a lack of osteoinduction and risk of immunogenicity. Optimal healing can be achieved through optimizing the host, selecting the correct graft for the bony environment where the healing is required, and optimizing local graft site biology and stability. Tissue engineering in arthrodesis through obtaining a stable mechanical construct, use of an appropriate structural allograft, and placement of a biologic component (e.g., BMP-2) has shown to be a reliable means to obtain union and achieved satisfactory outcomes. Novel biological agents show promise and will continue to mature in their clinical application.


Allograft Bone banking Corticocancellous Femoral ring Demineralized bone matrix Bone morphogenetic protein (BMP) Union Arthrodesis Outcomes 


  1. Ai-Aql ZS, Alagl AS, Graves DT et al (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87(2):107–118CrossRefGoogle Scholar
  2. An HS et al (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-drier, frozen and mixed grafts. J Spinal Disord 8(2):131–135CrossRefGoogle Scholar
  3. Anand N et al (2006) Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine (Phila Pa 1976) 31(20):E748–E753CrossRefGoogle Scholar
  4. Aro HT, Aho AJ (1993) Clinical use of bone allografts. Ann Med 25(4):403–412CrossRefGoogle Scholar
  5. Aryan HE et al (2008) Stabilization of the atlantoaxial complex via C-1 lateral mass and C-2 pedicle screw fixation in a multicenter clinical experience in 102 patients: modification of the Harms and Goel techniques. J Neurosurg Spine 8(3):222–229. Scholar
  6. Bais MV, Wigner N, Young M et al (2009) BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 45(2):254–266CrossRefGoogle Scholar
  7. Balga R et al (2006) Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 39(2):325–335CrossRefGoogle Scholar
  8. Blanco JS et al (1997) Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 22(12):1338–1342CrossRefGoogle Scholar
  9. Brantigan JW (1994) Pseudarthrosis rate after allograft posterior lumbar interbody fusion with pedicle screw and plate fixation. Spine (Phila Pa 1976) 19(11): 1271–1279; discussion 1280CrossRefGoogle Scholar
  10. Brantigan J et al (1993) Compression strength of donor bone for posterior interbody fusion. Spine 18(9): 1213–1221CrossRefGoogle Scholar
  11. Breur GJ, VanEnkevort BA, Farnum CE et al (1991) Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res 9(3):348–359CrossRefGoogle Scholar
  12. Bridwell KH et al (1995) Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine (Phila Pa 1976) 20(12):1410–1418CrossRefGoogle Scholar
  13. Burkus JK et al (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16(2):113–122CrossRefGoogle Scholar
  14. Burkus JK et al (2005) Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am 87(6):1205–1212PubMedGoogle Scholar
  15. Burkus JK et al (2017) Clinical and radiographic outcomes in patients undergoing single-level anterior cervical arthrodesis: a prospective trial comparing allograft to a reduced dose of rhBMP-2. Clin Spine Surg 30(9):E1321–E1332CrossRefGoogle Scholar
  16. Buser Z et al (2016) Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine 25(4):509–516CrossRefGoogle Scholar
  17. Butterman GR (2008) Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J 8(3):426–435. Epub 2007 Mar 7CrossRefGoogle Scholar
  18. Coric D et al (2018) Prospective, randomized multicenter study of cervical arthroplasty versus anterior cervical discectomy and fusion: 5-year results with a metal-on-metal artificial disc. J Neurosurg Spine 28(3):252–261. Epub 2018 Jan 5.
  19. Cornu O et al (2000) Effect of freeze drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18(3):426–431CrossRefGoogle Scholar
  20. Costain DJ et al (2000) Fresh frozen vs irradiated allograft bone in orthopaedic reconstructive surgery. Clin Orthop Relat Res 371:38–45CrossRefGoogle Scholar
  21. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36(12):1392–1404CrossRefGoogle Scholar
  22. Dziedzic-Goclawska A (2005) Irradiation as a safety procedure in tissue banking. Cell Tissue Bank 6:201–219CrossRefGoogle Scholar
  23. Einhorn TA (2005) The science of fracture healing. J Orthop Trauma 19(Suppl 10):S4–S6CrossRefGoogle Scholar
  24. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A(3):454–464CrossRefGoogle Scholar
  25. Folsch C et al (2015) Influence of thermal disinfection and duration of cryopreservation at different temperatures on pull out strength of cancellous bone. Cell Tissue Bank 16:73–81CrossRefGoogle Scholar
  26. Fraser JF, Härtl R (2007) Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine 6(4):298–303CrossRefGoogle Scholar
  27. Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5): 873–884CrossRefGoogle Scholar
  28. Gerstenfeld LC, Alkhiary YM, Krall EA et al (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11): 1215–1228CrossRefGoogle Scholar
  29. Giannoudis PV, Einhorn T, Marsh D (2007) Fracture healing: the diamond concept. Injury 38s4:s3–s6CrossRefGoogle Scholar
  30. Gibson S et al (2002) Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine 27(15):1599–1603CrossRefGoogle Scholar
  31. Glennie RA et al (2016) A systematic review with consensus expert opinion of best reconstructive techniques after osseous en bloc spinal column tumor resection. Spine (Phila Pa 1976) 41(Suppl 20):S205–S211CrossRefGoogle Scholar
  32. Gornet M et al (2017) Cervical disc arthroplasty with the prestige LP disc versus anterior cervical discectomy and fusion, at 2 levels: results of a prospective, multicenter randomized controlled clinical trial at 24 months. J Neurosurg Spine 26(6):p653–p667CrossRefGoogle Scholar
  33. Granero-Molto F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898CrossRefGoogle Scholar
  34. Green E, Lubahn JD, Evans J (2005) Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 14(2): 64–72PubMedGoogle Scholar
  35. Hamer AJ et al (1996) Biomechanical properties of cortical bone allograft using a new method of bone strength measurement. A comparison of, fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br 78(3):363–368CrossRefGoogle Scholar
  36. Janssen ME et al (2005) Anterior lumbar interbody fusion using femoral ring allograft for treatment of degenerative disc disease. Semin Spine Surg 17:251–258CrossRefGoogle Scholar
  37. Jorgenson SS et al (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum 1-year follow-up in 144 patients. Spine (Phila Pa 1976) 19(18):2048–2053CrossRefGoogle Scholar
  38. Kannan A, Dodwad SN, Hsu WK (2015) Biologics in spine arthrodesis. J Spinal Disord Tech 28:163–170CrossRefGoogle Scholar
  39. Kempen DHR, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ, Dhert WJA (2010) Growth factor interactions in bone regeneration. Tissue Eng B Rev 16: 551–566CrossRefGoogle Scholar
  40. Keramaris NC, Calori GM, Nikolaou VS et al (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(Suppl 2):S45–S57CrossRefGoogle Scholar
  41. Laurencin CT, Khan YM (2013) Regenerative engineering. CRC Press, Boca RatonCrossRefGoogle Scholar
  42. Lee SK, Lorenzo J (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18(4): 411–418CrossRefGoogle Scholar
  43. Lee SK et al (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18(4): 411–418CrossRefGoogle Scholar
  44. Marsell R, Einhorn TA (2009) The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury 40(Suppl 3):S4–S7CrossRefGoogle Scholar
  45. Montgomery DM et al (1990) Posterior spinal fusion: allograft versus autograft bone. J Spinal Disord 3(4): 370–375PubMedGoogle Scholar
  46. Mroz T et al (2009) The use of allograft bone in spine surgery:is it safe? Spine J 9:303–308CrossRefGoogle Scholar
  47. Muzević D et al (2018) Anterior cervical discectomy with instrumented allograft fusion: lordosis restoration and comparison of functional outcomes among patients of different age groups. World Neurosurg 109:e233–e243CrossRefGoogle Scholar
  48. Nguyen H et al (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8:93–105CrossRefGoogle Scholar
  49. Nockers RP et al (2007) Occipitocervical fusion with rigid internal fixation: long-term follow-up data in 69 patients. J Neurosurg Spine 7(2):117–123CrossRefGoogle Scholar
  50. Park JH et al (2017) Efficacy of cortico/cancellous composite allograft in treatment of cervical spondylosis. Medicine (Baltimore) 96(33):e7803CrossRefGoogle Scholar
  51. Peppers TA et al (2017) Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution® Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervicaldiscectomy and fusion. J Orthop Surg Res 12(1):67. Scholar
  52. Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86CrossRefGoogle Scholar
  53. Pradhan BB et al (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 31(10):E277–E284CrossRefGoogle Scholar
  54. Price CT et al (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 28(8):793–798Google Scholar
  55. Rahn BA (2002) Bone healing: histologic and physiologic concepts. In: Fackelman GE (ed) Bone in clinical orthopedics. Thieme, Stuttgart, pp 287–326Google Scholar
  56. Samartzis D et al (2003) Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J 3(6):451–459CrossRefGoogle Scholar
  57. Schizas C et al (2008) Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled pilot study. Arch Orthop Trauma Surg 128:621–625CrossRefGoogle Scholar
  58. Sfeir C et al (2005) Fracture repair. In: Leiberman JR, Freidlander GE (eds) Bone regeneration and repair. Humana Press, Totowa, pp 21–44CrossRefGoogle Scholar
  59. Shapiro F (1988) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 70(7):1067–1081CrossRefGoogle Scholar
  60. Singh R et al (2016) Radiation sterilization of tissue allografts: a review. World J Radiol 8(4):355–336CrossRefGoogle Scholar
  61. Slosar PJ et al (2007) Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7(3):301–307CrossRefGoogle Scholar
  62. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  63. Takaso M, Nakazawa T, Imura T, Ueno M, Saito W, Shintani R, Fukushima K, Toyama M, Sukegawa K, Okada T, Fukuda M (2011) Surgical treatment of scoliosis using allograft bone from a regional bone bank. Arch Orthop Trauma Surg 131(2):149–155CrossRefGoogle Scholar
  64. Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25CrossRefGoogle Scholar
  65. Tuchman A et al (2017) Autograft versus allograft for cervical spinal fusion: a systematic review. Global Spine J 7(1):59–70CrossRefGoogle Scholar
  66. Urist MR, Strates BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Including observations on acetone-fixed intra and extracellular proteins. Clin Orthop Relat Res 71:271–278CrossRefGoogle Scholar
  67. Urist M et al (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283CrossRefGoogle Scholar
  68. Vaidya R et al (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89(3):342–345CrossRefGoogle Scholar
  69. Voor MJ et al (1998) Biomechanical evaluation of posterior and anterior lumbar interbody fusion techniques. J Spinal Disord 11(4):328–334CrossRefGoogle Scholar
  70. Wang JC et al (2007) A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1223–1240CrossRefGoogle Scholar
  71. White E, Shors EC (1986) Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin N Am 30:49–67PubMedGoogle Scholar
  72. Yeh KT et al (2017) Fresh frozen cortical strut allograft in two-level anterior cervical corpectomy and fusion. PLoS One 12(8):e0183112. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gold Coast SpineSouthportAustralia
  2. 2.Faculty of Health Sciences & MedicineBond UniversityVarsity LakesAustralia

Section editors and affiliations

  • Matthew N Scott-Young
    • 1
  1. 1.Faculty of Health Sciences & MedicineBond UniversityGold CoastAustralia

Personalised recommendations