Stand-Alone Interbody Devices: Static Versus Dynamic

Living reference work entry


Disc degeneration in the lumbar spine accounts for the vast majority of non-acute spine pathology. Progressive loss of disc height leads to a cascade of biomechanical and morphological changes locally in the functional spinal unit (FSU), which in turn may affect the adjacent segments. Loss of disc height may lead to neural compression, facet joint arthropathy, and progressive instability. Multilevel disc degeneration may affect the global spinal biomechanics and alignment resulting in degenerative kyphoscoliosis.

Treatment of degenerative disc disease (DDD) aims to remove the pain generator (degenerative disc), restore disc height and lordosis, and decompress the neural elements (directly or indirectly). The treatment should take into account the alignment (lordosis) of the FSU and also the global alignment of the spine.

Restoring the disc height is achieved by inserting an interbody device to restore the disc height and lordosis. The interbody device could be static which aims at fusing the spinal segment and stopping the painful movement of the disc and the facets, or dynamic, which maintains full or partial controlled movement of the spinal segment as close as possible to the physiological movement (close to the axis of rotation of the disc). The aim of this chapter is to explore the methods of restoring the disc height with either static or dynamic devices and also by combining the two methods depending on the stage of disc degeneration.

The ideal treatment of DDD is to match the pathology with the technology, taking into account patient needs, expectations, comorbidities, and the surgeon’s skills and training.


Degenerative disc Interbody fusion Disc replacement Disc height Static interbody Dynamic interbody 


  1. Aunoble S, Meyrat R, Al Sawad Y, Tournier C, Leijssen P, Le Huec JC (2010) Hybrid construct for two levels disc disease in lumbar spine. Eur Spine J 19(2):290–296. Scholar
  2. Bertagnoli R, Kumar S (2002) Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 11(Suppl 2):S131–S136. Scholar
  3. Blumenthal SL, Baker J, Dossett A, Selby DK (1988) The role of anterior lumbar fusion for internal disc disruption. Spine (Phila Pa 1976) 13(5):566–569. Scholar
  4. Blumenthal S, McAfee PC, Guyer RD et al (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITÉTM artificial disc versus lumbar fusion – part I: evaluation of clinical outcomes. Spine (Phila Pa 1976) 30(14):1565–1575. Scholar
  5. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 27(21):2396–2408. Scholar
  6. Büttner-Janz K, Schellnack K, Zippel H (1989) Biomechanics of the SB Charité lumbar intervertebral disc endoprosthesis. Int Orthop 13(3):173–176. Scholar
  7. Buttner-Janz K, Schellnack K (1990) Intervertebral disk endoprosthesis – development and current status. Beitr Orthop Traumatol 37(3):137–147PubMedGoogle Scholar
  8. Buttner-Janz K, Schellnack K, Zippel H (1987) An alternative treatment strategy in lumbar intervertebral disk damage using an SB Charité modular type intervertebral disk endoprosthesis. Z Orthop Ihre Grenzgeb 125(1):1–6. Scholar
  9. Chen B, Akpolat YT, Williams P, Bergey D, Cheng WK (2016) Survivorship and clinical outcomes after multi-level anterior lumbar reconstruction with stand-alone anterior lumbar interbody fusion or hybrid construct. J Clin Neurosci 28:7–11. Scholar
  10. Choi JY, Choi YW, Sung KH (2005) Anterior lumbar interbody fusion in patients with a previous discectomy: minimum 2-year follow-up. J Spinal Disord Tech 18(4):347–352CrossRefGoogle Scholar
  11. Choi K-C, Kim J-S, Shim H-K, Ahn Y, Lee S-H (2014) Changes in the adjacent segment 10 years after anterior lumbar interbody fusion for low-grade isthmic spondylolisthesis. Clin Orthop Relat Res 472(6):1845–1854. Scholar
  12. Delamarter R, Zigler JE, Balderston RA, Cammisa FP, Goldstein JA, Spivak JM (2011) Prospective, randomized, multicenter food and drug administration investigational device exemption study of the ProDisc-L total disc replacement compared with circumferential arthrodesis for the treatment of two-level lumbar degenerative disc disease: res. J Bone Jt Surg Ser A 93(8):705–715. Scholar
  13. Fantini GA, Pappou IP, Girardi FP, Sandhu HS, Cammisa FP (2007) Major vascular injury during anterior lumbar spinal surgery: incidence, risk factors, and management. Spine (Phila Pa 1976) 32(24):2751–2758. Scholar
  14. Fernström U (1966) Arthroplasty with intercorporal endoprosthesis in herniated disc and in painful disc. Orthop Scan Suppl 10:287–289Google Scholar
  15. Fritzell P, Hagg O, Wessberg P, Nordwall A (2001) Volvo award winner in clinical studies: lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish lumbar spine study group. Spine (Phila Pa 1976) 26(23):2521–2524. Scholar
  16. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver. Spine (Phila Pa 1976) 31(7):762–768. Scholar
  17. Gertzbein SD, Seligman J, Holtby R et al (1985) Centrode patterns and segmental instability in degenerative disc disease. Spine (Phila Pa 1976) 10(3):257–261. Accessed 19 Nov 2017CrossRefGoogle Scholar
  18. Gornet MF, Burkus JK, Dryer RF, Peloza JH (2011) Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine (Phila Pa 1976) 36(25). Scholar
  19. Greenough CG, Taylor LJ, Fraser RD (1994) Anterior lumbar fusion: results, assessment techniques and prognostic factors. Eur Spine J 3(4):225–230. Accessed 19 Nov 2017CrossRefGoogle Scholar
  20. Hiratzka J, Rastegar F, Contag AG, Norvell DC, Anderson PA, Hart RA (2015) Adverse event recording and reporting in clinical trials comparing lumbar disk replacement with lumbar fusion: a systematic review. Glob Spine J 5(6):486–495. Scholar
  21. Hoff EK, Strube P, Pumberger M, Zahn RK, Putzier M (2016) ALIF and total disc replacement versus 2-level circumferential fusion with TLIF: a prospective, randomized, clinical and radiological trial. Eur Spine J 25(5):1558–1566. Scholar
  22. Holt RT, Majd ME, Isaza JE et al (2007) Complications of lumbar artificial disc replacement compared to fusion: results from the prospective, randomized, multicenter US Food and Drug Administration investigational device exemption study of the Charité artificial disc. SAS J 1(1):20–27. Scholar
  23. Horsting PP, Pavlov PW, Jacobs WCH, Obradov-Rajic M, de Kleuver M (2012) Good functional outcome and adjacent segment disc quality 10 years after single-level anterior lumbar interbody fusion with posterior fixation. Glob Spine J 2(1):21–26. Scholar
  24. Jacobs W, Van der Gaag NA, Tuschel A et al (2012) Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst Rev (9):CD008326.
  25. Kanamori M, Yasuda T, Hori T, Suzuki K, Kawaguchi Y (2012) Minimum 10-year follow-up study of anterior lumbar interbody fusion for degenerative spondylolisthesis: progressive pattern of the adjacent disc degeneration. Asian Spine J 6(2):105–114. Scholar
  26. Lechner R, Putzer D, Liebensteiner M, Bach C, Thaler M (2017) Fusion rate and clinical outcome in anterior lumbar interbody fusion with beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute. A prospective clinical study in fifty patients. Int Orthop 41(2):333–339. Scholar
  27. Lee S-H, Kang B-U, Jeon SH et al (2006) Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation. J Neurosurg Spine 5(3):228–233. Scholar
  28. Melrose J, Ghosh P (1988) The quantitative discrimination of corneal type I, but not skeletal type II, keratan sulfate in glycosaminoglycan mixtures by using a combination of dimethylmethylene blue and endo-beta-D-galactosidase digestion. Anal Biochem 170(2):293–300. Accessed 19 Nov 2017CrossRefGoogle Scholar
  29. Panagiotacopulos ND, Pope MH, Bloch R, Krag MH (1987a) Water content in human intervertebral discs. Part II. Viscoelastic behavior. Spine (Phila Pa 1976) 12(9):918–924. Accessed 19 Nov 2017CrossRefGoogle Scholar
  30. Panagiotacopulos ND, Pope MH, Krag MH, Block R (1987b) Water content in human intervertebral discs. Part I. Measurement by magnetic resonance imaging. Spine (Phila Pa 1976) 12(9):912–917. Accessed 19 Nov 2017CrossRefGoogle Scholar
  31. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 91(September 1996):60–64. Scholar
  32. Regan JJ, McAfee PC, Blumenthal SL et al (2006) Evaluation of surgical volume and the early experience with lumbar total disc replacement as part of the investigational device exemption study of the Charité artificial disc. Spine (Phila Pa 1976) 31(19):2270–2276. Scholar
  33. Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 14(2):166–174. Accessed 19 Nov 2017CrossRefGoogle Scholar
  34. Scott-Young M, Kasis A, Magno C, Nielsen C, Mitchell E, Blanch N (2012) Clinical results of two-level lumbar disc replacement vs. combined arthroplasty & fusion (hybrid procedure) in 200 patients with a minimum of 4 years follow-up. In: ISASS12 BarcelonGoogle Scholar
  35. Scott-Young M, McEntee L, Cho J, Luukkonen I (2016) The incidence of adjacent segment disease and index level revision and outcomes of secondary surgical intervention following single level lumbar total disc replacement. In: ISASS 16, Las VegasGoogle Scholar
  36. Scott-Young M, McEntee L, Schram B, Rathbone E, Hing W, Nielsen D (2017) The concurrent use of lumbar total disc arthroplasty and anterior lumbar interbody fusion. Spine (Phila Pa 1976) 1. Scholar
  37. Siepe CJ, Stosch-Wiechert K, Heider F et al (2015) Anterior stand-alone fusion revisited: a prospective clinical, X-ray and CT investigation. Eur Spine J 24(4):838–851. Scholar
  38. Singh K, Masuda K, Thonar EJ-MA, An HS, Cs-Szabo G (2009) Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976) 34(1):10–16. Scholar
  39. Tang S, Meng X (2011) Does disc space height of fused segment affect adjacent degeneration in ALIF? A finite element study. Turk Neurosurg 21(3):296–303. Scholar
  40. Tsuji T, Watanabe K, Hosogane N et al (2016) Risk factors of radiological adjacent disc degeneration with lumbar interbody fusion for degenerative spondylolisthesis. J Orthop Sci 21(2):133–137. Scholar
  41. Vishteh AG, Dickman CA (2001) Anterior lumbar microdiscectomy and interbody fusion for the treatment of recurrent disc herniation. Neurosurgery 48(2):334–337. Discussion 338. Scholar
  42. Yue J, Bertagnoli RF-MA (2006) The concurrent use of lumbar total disc arthroplasty and adjacent level lumbar fusion: hybrid lumbar disc arthroplasty: a prospective study. Spine J 6(6):152S–152SCrossRefGoogle Scholar
  43. Zigler J, Delamarter R, Spivak JM et al (2007) Results of the prospective, randomized, multicenter food and drug administration investigational device exemption study of the ProDisc®-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 32(11):1155–1162. Scholar

Authors and Affiliations

  1. 1.Northumbria NHS Trust, UK and Nuffield HospitalNewcastle-upon-TyneUK

Section editors and affiliations

  • Matthew N. Scott-Young
    • 1
    • 2
  1. 1.Gold Coast SpineSouthportAustralia
  2. 2.Faculty of Health Sciences & MedicineBond UniversityVarsity LakesAustralia

Personalised recommendations