Pedicle Screw Fixation

  • Nickul S. Jain
  • Raymond J. HahEmail author
Living reference work entry


Pedicle screws and rods are a modern posterior spinal instrumentation system that has gained widespread adoption throughout the world as the gold standard for instrumentation of the spine over the last two decades. They provide significant advantages in that they provide rigid 3-column fixation of the spine from an entirely posterior approach without reliance on intact dorsal elements. However, there is a steep learning curve for their placement, and adequate training is required prior to their routine use. They are not without their own set of unique complications. Many modifications to pedicle screws exist to improve clinical outcomes including augmentation with cement, and a variety of novel technologies can be used to help improve accuracy in their placement including fluoroscopy, computer navigation, and robotics.


Pedicle screw Pedicle instrumentation Transpedicular fixation Navigation Screw Dorsal instrumentation 


  1. Avila MJ, Baaj AA (2016) Freehand thoracic pedicle screw placement: review of existing strategies and a step-by-step guide using uniform landmarks for all levels. Cureus 8(2):e501. Scholar
  2. Bai B, Kummer FJ, Spivak J (2001) Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute. Spine (Phila Pa 1976) 26:2679–2683CrossRefGoogle Scholar
  3. Barber JW, Boden SD, Ganey T (1997) A biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? Paper presented at Eastern Orthopaedic annual meeting, Scottsdale, Oct 1997Google Scholar
  4. Battula S, Schoenfeld AJ, Sahai V, Vrabec GA, Tank J, Njus GO (2008) Effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone. J Trauma 64(4): 990–995PubMedCrossRefPubMedCentralGoogle Scholar
  5. Becker S, Chavanne A, Spitaler R et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17: 1462–1469PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belmont PJ Jr, Klemme WR, Robinson M et al (2002) Accuracy of thoracic pedicle screws in patients with and without coronal plane spinal deformities. Spine (Phila Pa 1976) 27:1558–1566CrossRefGoogle Scholar
  7. Benzel EC (1995a) Biomechanically relevant anatomy and material properties of the spine and associated elements. In: Benzel EC (ed) Biomechanics of spine stabilization: principles and clinical practice. McGraw-Hill, New York, pp 3–16Google Scholar
  8. Benzel EC (1995b) Implant-bone interfaces. In: Benzel EC (ed) Biomechanics of spine stabilization: principles and clinical practice. McGraw-Hill, New York, pp 127–134Google Scholar
  9. Boucher HH (1959) A method of spinal fusion. J Bone Joint Surg Am 41-B:248–259CrossRefGoogle Scholar
  10. Calvert GC, Lawrence BD, Abtahi AM et al (2015) Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. J Neurosurg Spine 22:166–172PubMedCrossRefPubMedCentralGoogle Scholar
  11. Carmouche JJ, Molinari RW, Gerlinger T, Devine J, Patience T (2005) Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine. J Neurosurg Spine 3:364–370PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chang KW, Dewei Z, McAfee PC et al (1989) A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. J Spinal Disord 1:257–266Google Scholar
  13. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chatzistergos PE, Sapkas G, Kourkoulis SK (2010) The influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Spine (Phila Pa 1976) 35:E332–E337CrossRefGoogle Scholar
  15. Cho W, Cho S, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 92-B(8):1061–1065CrossRefGoogle Scholar
  16. Chung KJ, Suh SW, Desai S, Song HR (2008) Ideal entry point for the thoracic pedicle screw during the free hand technique. Int Orthop 32:657–662. [PMID: 17437109]CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coe JD, Warden KE, Herzig MA et al (1990) Influence of bone mineral density on the fixation of the thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 15:902–907CrossRefGoogle Scholar
  18. Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD (2004) Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J 4(4):402–408PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop 227: 10–23PubMedPubMedCentralGoogle Scholar
  20. Daftari TK, Horton WC, Hutton WC (1994) Correlations between screw hold preparation, torque of insertion, and pullout strength for spinal screws. J Spinal Disord 7:139–145PubMedCrossRefPubMedCentralGoogle Scholar
  21. Erkan S, Hsu B, Wu C et al (2010) Alignment of pedicle screws with pilot holes: can tap- ping improve screw trajectory in thoracic spines? Eur Spine J 19:71–77PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fischgrund JS, Mackay M et al (1997) Volvo Award winner in clinical studies: degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976) 22:2807–2812CrossRefGoogle Scholar
  23. Fogel GR, Reitman CA, Liu W et al (2003) Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure. Spine (Phila Pa 1976) 28:470–473Google Scholar
  24. Gao M, Lei W, Wu Z, Liu D, Shi L (2011) Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation. Clin Biomech 26(3): 238–244CrossRefGoogle Scholar
  25. Gelalis ID, Paschos NK, Pakos EE et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255PubMedCrossRefPubMedCentralGoogle Scholar
  26. George DC, Krag MH, Johnson CC et al (1991) Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae. Spine (Phila Pa 1976) 16:181–184Google Scholar
  27. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14CrossRefGoogle Scholar
  28. Harrington PR (1962) Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610PubMedCrossRefPubMedCentralGoogle Scholar
  29. Harrington PR (1988) The history and development of Harrington instrumentation. Clin Orthop Relat Res 227:3–5PubMedPubMedCentralGoogle Scholar
  30. Hirano T, Hasegawa K, Takahashi HE et al (1997) Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 22:2504–2509CrossRefGoogle Scholar
  31. Kast E, Mohr K, Richter H-P, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15(3):327–334PubMedCrossRefPubMedCentralGoogle Scholar
  32. King D (1944) Internal fixation for lumbosacral fusion. Am J Surg 66:357–361CrossRefGoogle Scholar
  33. King D (1948) Internal fixation for lumbosacral fusion. J Bone Joint Surg 30-A:560–565CrossRefGoogle Scholar
  34. Koller H, Zenner J, Hitzl W et al (2013) The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. Spine J 13(5):532–541PubMedCrossRefPubMedCentralGoogle Scholar
  35. Krag MH (1991) Biomechanics of thoracolumbar spinal fixation. A review. Spine (Phila Pa 1976) 16:S84–S99CrossRefGoogle Scholar
  36. Krag MH et al (1988) Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebrae interface strength. J Spinal Disord 1:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kwok AW, Finkesltein JA et al (1996) Insertional torque and pull-out strength of conical and cylindrical pedicle screws in cadaveric bone. Spine (Phila Pa 1976) 21:2429–2434CrossRefGoogle Scholar
  38. Lehman RA Jr, Polly DW Jr, Kuklo TR et al (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976) 28:2058–2065CrossRefGoogle Scholar
  39. Lei W, Wu Z (2006) Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J 15(3):321–326PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lill CA, Schneider E, Goldhahn J, Haslemann A, Zeifang F (2006) Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Arch Orthop Trauma Surg 126(10):686–694PubMedCrossRefPubMedCentralGoogle Scholar
  41. Liu YK, Njus GO, Bahr PA, Geng P (1990) Fatigue life improvement of nitrogen-ion- implanted pedicle screws. Spine (Phila Pa 1976) 15:311–317CrossRefGoogle Scholar
  42. Liu D, Shi L, Lei W et al (2016) Biomechanical Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-augmented Pedicle Screw in Osteoporotic Synthetic Bone in Primary Implantation: An Experimental Study. Clin Spine Surg 29(7):E351–357PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81(11):1519–1528PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lorenz M, Zindric M, Schwaegler P (1991) A comparison of single-level fusions with and without hardware. Spine (Phila Pa 1976) 16:S455–S458CrossRefGoogle Scholar
  45. Louis R (1986) Fusion of the lumbar and sacral spine by internal fixation with screw plates. Clin Orthop 203:18–33Google Scholar
  46. Louis R (1996) Application of the Louis system for thoracolumbar and lumbosacral spine stabilization. In: Fessler RG, Haid RW (eds) Current techniques in spinal stabilization. McGraw-Hill, New York, pp 399–407Google Scholar
  47. Ludwig SC, Kramer DL, Vaccaro AR, Albert TJ (1999) Transpedicle screw fixation of the cervical spine. Clin Orthop Relat Res 359:77–88CrossRefGoogle Scholar
  48. Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine (Phila Pa 1976) 25(13):1655–1667CrossRefGoogle Scholar
  49. Luque ER (1980) Segmental spinal instrumentation: a method of rigid internal fixation of the spine to induce arthrodesis. Orthop Trans 4:391Google Scholar
  50. Mason A, Paulsen R, Babuska JM et al (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20:196–203PubMedCrossRefPubMedCentralGoogle Scholar
  51. McAfee PC, Weiland DJ, Carlow JJ (1991) Survivorship analysis of pedicle spinal instrumentation. Spine (Phila Pa 1976) 16:S422–S427CrossRefGoogle Scholar
  52. McCormack BM, Benzel EC, Adams MS et al (1995) Anatomy of the thoracic pedicle. Neurosurgery 37:303–308PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mikula A, Williams SK, Anderson PA (2016) The use of intraoperative triggered electromyography to detect misplaced pedicle screws: a systematic review and meta-analysis. J Neurosurg Spine 24:624–638PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ohlin A, Karrlson M, Duppe H et al (1994) Complications after transpedicular stabilization of the spine: a survivorship analysis of 163 cases. Spine (Phila Pa 1976) 19:2774–2779CrossRefGoogle Scholar
  55. Orndorff DG, Zdeblick TA (2017) Chapter 71: Thoracolumbar instrumentation: anterior and posterior. In: Benzel spine. Elsevier, Philadelphia, PACrossRefGoogle Scholar
  56. Panjabi MM, Yamamoto I, Oxland TR (1991a) Biomechanical stability of the pedicle screw fixation systems in a human lumbar spine instability model. Clin Biomech 6:197–205CrossRefGoogle Scholar
  57. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991b) Cervical human vertebrae: quantitative three-dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976) 16:861–869CrossRefGoogle Scholar
  58. Parker SL, McGirt MJ, Farber SH, Amin AG, Rick AM, Suk I, Bydon A, Sciubba DM, Wolinsky JP, Gokaslan ZL, Witham TF (2011) Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68:170–178; discussionPubMedCrossRefPubMedCentralGoogle Scholar
  59. Pelton MA, Schwartz J, Singh K (2012) Subaxial cervical and cervicothoracic fixation techniques – indications, techniques, and outcomes. Orthop Clin North Am 43(1):19–28, vii. Epub 2011 Oct 19PubMedCrossRefPubMedCentralGoogle Scholar
  60. Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M (2016) Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg 100:165–169PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pfeiffer FM, Abernathie DL, Smith DE (2006) A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine (Phila Pa 1976) 31:867–870CrossRefGoogle Scholar
  62. Puno RM, Bechtold JE, Byrd JA et al (1987) Biomechanical analysis of five techniques of fixation for the lumbosacral junction. Orthop Trans 11:86Google Scholar
  63. Puvanesarajah, Liauw JA, Lo SF, Lina IA, Witham TF (2014) Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 5(2):112–123PubMedPubMedCentralCrossRefGoogle Scholar
  64. Reidy DP, Houlden D, Nolan PC et al (2001) Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws. J Bone Joint Surg Br 83:1009–1014PubMedCrossRefPubMedCentralGoogle Scholar
  65. Robert WG (2000) The use of pedicle screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg 82:1458CrossRefGoogle Scholar
  66. Rodriguez A, Neal MT, Liu A et al (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36:E9PubMedCrossRefPubMedCentralGoogle Scholar
  67. Rohmiller MT, Schwalm D, Glattes RC, Elalayli TG, Spengler DM (2002) Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J 2(4):255–260PubMedCrossRefPubMedCentralGoogle Scholar
  68. Roy-Camille R, Roy-Camille M, Demeulenaere C (1970) Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med 78(32):1447–1448Google Scholar
  69. Sandén B, Olerud C, Larsson S (2001) Hydroxyapatite coating enhances fixation of loaded pedicle screws: a mechanical in vivo study in sheep. Eur Spine J 10: 334–339PubMedPubMedCentralCrossRefGoogle Scholar
  70. Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  71. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intra- operative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery 69:1307–1316PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shea T, Laun J, Gonzalez-Blohm S et al (2014) Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. Biomed Res Int 2014:748393. A) cylindrical screw B) conical screw. Scholar
  73. Shepard MF, Davies MR, Abayan A et al (2002) Effects of polyaxial pedicle screws on lumbar construct rigidity. J Spinal Disord Tech 15:233–236PubMedCrossRefPubMedCentralGoogle Scholar
  74. Steffee AD, Biscup RS, Sitkowski DJ (1986) Segmental spine plates with pedicle screw fixation: a new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop 203:45–53Google Scholar
  75. Ughwanogho E, Patel NM, Baldwin KD et al (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine (Phila Pa 1976) 37:E473–E478CrossRefGoogle Scholar
  76. Vaccaro AR, Garfin SR (1995a) Pedicle-screw fixation in the lumbar spine. J Am Acad Orthop Surg 3(5): 263–274PubMedCrossRefPubMedCentralGoogle Scholar
  77. Vaccaro AR, Garfin SR (1995b) Internal fixation (pedicle screw fixation) for fusion of the lumbar spine. Spine (Phila Pa 1976) 20(Suppl 24):157S–165SGoogle Scholar
  78. Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C, An HS (1995) Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am 77:1200–1206. [PMID: 7642665]PubMedCrossRefPubMedCentralGoogle Scholar
  79. Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976) 37(25):E1580–E1587. Scholar
  80. Vanichkachorn JS, Vaccaro AR, An HS (1999) Chapter 19, Transpedicular screw instrumentation. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  81. Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5992 pedicle screws. Eur Spine J 19:370–375PubMedPubMedCentralCrossRefGoogle Scholar
  82. Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4500 screws. Eur Spine J 22:654–660. [PMID: 23001415]CrossRefPubMedPubMedCentralGoogle Scholar
  83. West JL III, Bradford DS, Ogilvie JW (1991) Results of spinal arthrodesis with pedicle screw-plate fixation. J Bone Joint Surg Am 73:1179–1184PubMedCrossRefPubMedCentralGoogle Scholar
  84. Whitecloud TS, Skalley T, Cook SD (1989a) Roentgenographic measurements of pedicle screw penetration. Clin Orthop Relat Res 245:57–68Google Scholar
  85. Whitecloud TS III, Butler JC, Cohen JL et al (1989b) Complications with the variable spinal plating system. Spine 14:472–476PubMedCrossRefPubMedCentralGoogle Scholar
  86. Xu R, Ebraheim NA, Ou Y, Yeasting RA (1998) Anatomic considerations of pedicle screw placement in the thoracic spine. Roy-Camille technique versus open-lamina technique. Spine (Phila Pa 1976) 23:1065–1068. [PMID: 9589548]CrossRefGoogle Scholar
  87. Yoganandan N, Larson SJ, Pintar F et al (1990) Biomechanics of lumbar pedicle screw/plate fixation in trauma. Neurosurgery 27:873–881PubMedCrossRefPubMedCentralGoogle Scholar
  88. Yoshihara H, Passias PG, Errico TJ (2013) Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws. A systematic review. J Neurosurg Spine 19(5):614–623PubMedCrossRefPubMedCentralGoogle Scholar
  89. Youssef JA, McKinley TO, Yerby SA, McLain RF (1999) Characteristics of pedicle screw loading: effect of sagittal insertion angle on intrapedicular bending moments. Spine (Phila Pa 1976) 24:1077–1081CrossRefGoogle Scholar
  90. Yuan HA, Garfin SR, Dickman CA, Marjetko SM (1994) A historical cohort study of pedicle screw fixation: thoracic and lumbar spine fusions. Spine (Phila Pa 1976) 19(Suppl):2279S–2296SCrossRefGoogle Scholar
  91. Zdeblick TA (1993) A prospective randomized study of lumbar fusion. Preliminary results. Spine (Phila Pa 1976) 18:983–991CrossRefGoogle Scholar
  92. Zdeblick TA (1995) The treatment of degenerative lumbar disorders. Spine (Phila Pa 1976) 20:126S–137SCrossRefGoogle Scholar
  93. Zdeblick TA, Kunz DN, Cooke ME, McCabe R (1993) Pedicle screw pullout strength. Correlation with insertional torque. Spine (Phila Pa 1976) 18:1673–1676CrossRefGoogle Scholar
  94. Zindrick MR, Lorenz MA (1997) Posterior lumbar fusion: overview of options and internal fixation devices. In: Frymoyer JW (ed) The adult spine. Lippincott-Raven, Philadelphia, pp 2175–2205Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of Southern CaliforniaLos AngelesUSA

Section editors and affiliations

  • Don K. Moore
    • 1
  • William C. Welch
    • 2
    • 3
  1. 1.Department of Orthopaedic SurgeryUniversity of Missouri Health CareColumbiaUSA
  2. 2.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of NeurosurgeryPennsylvania HospitalPhiladelphiaUSA

Personalised recommendations