Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Machine Learning Paradigms in Wireless Network Association

  • Jingjing Wang
  • Chunxiao JiangEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_68-1

Synonyms

Definitions

Investigating machine learning aided cooperative resource allocation and network association mechanisms for wireless networks.

Introduction

Wireless network association has received substantial attention both in the academic and industrial communities. One of their driving forces is that of efficiently providing unprecedented data rates for supporting radical new applications (Jiang et al., 2017). Specifically, a range of network association schemes are expected to learn the diverse and colorful characteristics of both the users’ ambience and the human behaviors, in order to autonomously determine the optimal system configurations for the sake of conserving energy as well as maximizing network capacity. Moreover, smart mobile terminals have to rely on sophisticated learning and decision-making. Machine learning, as one of the most powerful artificial intelligence tools, constitutes a...

This is a preview of subscription content, log in to check access.

References

  1. Alnwaimi G, Vahid S, Moessner K (2015) Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Trans Wirel Commun 14(4):2294–2308CrossRefGoogle Scholar
  2. Alsheikh MA, Lin S, Niyato D, Tan HP (2014) Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutorials 16(4):1996–2018CrossRefGoogle Scholar
  3. Aprem A, Murthy CR, Mehta NB (2013) Transmit power control policies for energy harvesting sensors with retransmissions. IEEE J Sel Top Sign Proces 7(5):895–906CrossRefGoogle Scholar
  4. Aslam MW, Zhu Z, Nandi AK (2012) Automatic modulation classification using combination of genetic programming and KNN. IEEE Trans Wirel Commun 11(8):2742–2750Google Scholar
  5. Assra A, Yang J, Champagne B (2016) An EM approach for cooperative spectrum sensing in multiantenna CR networks. IEEE Trans Veh Technol 65(3):1229–1243CrossRefGoogle Scholar
  6. Ateş E, Kalayci TE, Uğur A (2017) Area-priority-based sensor deployment optimisation with priority estimation using K-means. IET Commun 11(7):1082–1090CrossRefGoogle Scholar
  7. Chen YS, Chang CJ, Hsieh YL (2006) A channel effect prediction-based power control scheme using PRNN/ERLS for uplinks in DS-CDMA cellular mobile systems. IEEE Trans Wirel Commun 5(1):23–27CrossRefGoogle Scholar
  8. Chen YH, Chang CJ, Huang CY (2009) Fuzzy Q-learning admission control for WCDMA/WLAN heterogeneous networks with multimedia traffic. IEEE Trans Mob Comput 8(11):1469–1479CrossRefGoogle Scholar
  9. Choi KW, Hossain E (2013) Estimation of primary user parameters in cognitive radio systems via hidden Markov model. IEEE Trans Signal Process 61(3):782–795MathSciNetCrossRefGoogle Scholar
  10. Clancy C, Hecker J, Stuntebeck E, O’Shea T (2007) Applications of machine learning to cognitive radio networks. IEEE Wirel Commun 14(4):47–52CrossRefGoogle Scholar
  11. Donohoo BK, Ohlsen C, Pasricha S, Xiang Y, Anderson C (2014) Context-aware energy enhancements for smart mobile devices. IEEE Trans Mob Comput 13(8):1720–1732CrossRefGoogle Scholar
  12. Fakhfakh E, Hamouda S (2017) Optimised Q-learning for WiFi offloading in dense cellular networks. IET Commun 11(15):2380–2385CrossRefGoogle Scholar
  13. Feng VS, Chang SY (2012) Determination of wireless networks parameters through parallel hierarchical support vector machines. IEEE Trans Parallel Distrib Syst 23(3):505–512CrossRefGoogle Scholar
  14. Feng Z, Li X, Zhang Q, Li W (2017) Proactive radio resource optimization with margin prediction: a data mining approach. IEEE Trans Veh Technol 66(10):9050–9060CrossRefGoogle Scholar
  15. Hajjar M, Aldabbagh G, Dimitriou N, Win MZ (2017) Hybrid clustering scheme for relaying in multi-cell LTE high user density networks. IEEE Access 5:4431–4438CrossRefGoogle Scholar
  16. He Y, Mendis GJ, Wei J (2017) Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans Smart Grid 8(5):2505–2516CrossRefGoogle Scholar
  17. Jiang C, Zhang H, Ren Y, Han Z, Chen KC, Hanzo L (2017) Machine learning paradigms for next-generation wireless networks. IEEE Wirel Commun 24(2):98–105CrossRefGoogle Scholar
  18. Karim MS, Sorour S, Sadeghi P (2017) Network coding for video distortion reduction in device-to-device communications. IEEE Trans Veh Technol 66(6):4898–4913CrossRefGoogle Scholar
  19. Kato N, Fadlullah ZM, Mao B, Tang F, Akashi O, Inoue T, Mizutani K (2017) The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel Commun 24(3):146–153CrossRefGoogle Scholar
  20. Li X, Ding S, Li Y (2017) Outlier suppression via non-convex robust PCA for efficient localization in wireless sensor networks. IEEE Sensors J 17(21):7053–7063CrossRefGoogle Scholar
  21. Liang HW, Chung WH, Kuo SY (2016) Coding-aided K-means clustering blind transceiver for space shift keying MIMO systems. IEEE Trans Wirel Commun 15(1):103–115MathSciNetCrossRefGoogle Scholar
  22. Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2017) Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5:18042–18050CrossRefGoogle Scholar
  23. Maghsudi S, Stańczak S (2015) Channel selection for network-assisted D2D communication via no-regret bandit learning with calibrated forecasting. IEEE Trans Wirel Commun 14(3):1309–1322CrossRefGoogle Scholar
  24. Mostafa M (2017) Stability proof of iterative interference cancellation for OFDM signals with blanking nonlinearity in impulsive noise channels. IEEE Signal Process Lett 24(2):201–205MathSciNetCrossRefGoogle Scholar
  25. Nguyen H, Zheng G, Zheng R, Han Z (2013) Binary inference for primary user separation in cognitive radio networks. IEEE Trans Wirel Commun 12(4):1532–1542CrossRefGoogle Scholar
  26. Onireti O, Zoha A, Moysen J, Imran A, Giupponi L, Imran MA, Abu-Dayya A (2016) A cell outage management framework for dense heterogeneous networks. IEEE Trans Veh Technol 65(4):2097–2113CrossRefGoogle Scholar
  27. Qiu RC, Hu Z, Chen Z, Guo N, Ranganathan R, Hou S, Zheng G (2011) Cognitive radio network for the smart grid: experimental system architecture, control algorithms, security, and microgrid testbed. IEEE Trans Smart Grid 2(4):724–740CrossRefGoogle Scholar
  28. Thilina KGM, Hossain E, Kim DI (2016) DCCC-MAC: a dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Trans Veh Technol 65(5):3597–3613CrossRefGoogle Scholar
  29. Wang J, Jiang C, Han Z, Ren Y, Hanzo L (2016) Network association strategies for an energy harvesting aided super-wifi network relying on measured solar activity. IEEE J Sel Areas Commun 34(12):3785–3797CrossRefGoogle Scholar
  30. Wang J, Zhang X, Gao Q, Yue H, Wang H (2017a) Device-free wireless localization and activity recognition: a deep learning approach. IEEE Trans Veh Technol 66(7):6258–6267CrossRefGoogle Scholar
  31. Wang Y, Yang A, Chen X, Wang P, Wang Y, Yang H (2017b) A deep learning approach for blind drift calibration of sensor networks. IEEE Sensors J 17(13):4158–4171CrossRefGoogle Scholar
  32. Wang J, Jiang C, Zhang H, Zhang X, Leung VC, Hanzo L (2018) Learning-aided network association for hybrid indoor LiFi-WiFi systems. IEEE Trans Veh Technol 67(4):3561–3574CrossRefGoogle Scholar
  33. Wen CK, Jin S, Wong KK, Chen JC, Ting P (2015) Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning. IEEE Trans Wirel Commun 14(3):1356–1368CrossRefGoogle Scholar
  34. Xia M, Owada Y, Inoue M, Harai H (2012) Optical and wireless hybrid access networks: design and optimization. J Opt Commun Netw 4(10):749–759CrossRefGoogle Scholar
  35. Zhao T, Nehorai A, Porat B (2006) K-means clustering-based data detection and symbol-timing recovery for burst-mode optical receiver. IEEE Trans Commun 54(8):1492–1501CrossRefGoogle Scholar
  36. Zhao H, Zeng X, Zhang J, Li T (2011) Equalisation of non-linear time-varying channels using a pipelined decision feedback recurrent neural network filter in wireless communication systems. IET Commun 5(3):381–395MathSciNetCrossRefGoogle Scholar
  37. Zhu H, Xiao F, Sun L, Wang R, Yang P (2017) R-TTWD: robust device-free through-the-wall detection of moving human with WiFi. IEEE J Sel Areas Commun 35(5):1090–1103CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Electronic Engineering, Tsinghua Space CenterTsinghua UniversityBeijingPeople’s Republic of China

Section editors and affiliations

  • Hsiao-hwa Chen

There are no affiliations available