Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Indoor Visible Light Communication Networks for Camera-Based Mobile Sensing

  • Yanqun TangEmail author
  • Siyu Tao
  • Wei Li
  • Zhengyu Zhu
  • Zhiguo Shi
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_270-1



The camera-based sensor receivers available on today’s mobile devices prompt a new direction of research and applications, where visible light communication (VLC) can be combined with mobile computing to realize novel forms of sensing and communication applications. Optical camera communication (OCC) utilizes light-emitting diode (LED), LED arrays, or liquid-crystal display (LCD) as transmitters and employs camera-based sensors assembled in consumer electronic devices, such as smartphone and iPad as receivers to serve as an alternative to the photodiode (PD)- or avalanche photodiode (APD)-based receivers.

Historical Background

As a new emerging technology, VLC has great advantages over traditional radio frequency (RF) communication in terms of communication security, environmental protection, and broadband high speed and is therefore increasingly attracting attention. In recent years,...

This is a preview of subscription content, log in to check access.


  1. Bawazir SS, Sofotasios PC, Muhaidat S, Al-Hammadi Y, Karagiannidis GK (2018) Multiple access for visible light communications: research challenges and future trends. IEEE Access 6(99):26167–26174CrossRefGoogle Scholar
  2. CESI (2016) Visible light communications standards white paper. China Wireless Personal Area Network (CWPAN) working group, http://www.cesi.cn/cesi/ guanwanglanmu/biaozhunhuayanjiu/2016/0226/12407. html
  3. Chen C, Tsonev D, Haas H (2013) Joint transmission in indoor visible light communication downlink cellular networks. In: Globecom Workshops (GC Wkshps), 2013 IEEE. IEEE, pp 1127–1132Google Scholar
  4. Deqiang D, Xizheng K, Linpeng X (2007) An optimal lights layout scheme for visible-light communication system. In: Electronic measurement and instruments, 2007. ICEMI’07. 8th international conference on, IEEE, pp 2–189Google Scholar
  5. Du W, Liando JC, Li M (2016) Softlight: adaptive visible light communication over screen-camera links. In: Computer communications, IEEE INFOCOM 2016-the 35th annual IEEE international conference on, IEEE, pp 1–9Google Scholar
  6. Ergul O, Dinc E, Akan OB (2015) Communicate to illuminate: state-of-the-art and research challenges for visible light communications. Phys Commun 17:72–85CrossRefGoogle Scholar
  7. Grobe L, Paraskevopoulos A, Hilt J, Schulz D, Lassak F, Hartlieb F, Kottke C, Jungnickel V, Langer KD (2013) High-speed visible light communication systems. IEEE Commun Mag 51(12):60–66CrossRefGoogle Scholar
  8. Haas H, Yin L, Wang Y, Chen C (2016) What is LiFi? J Lightwave Technol 34(6):1533–1544CrossRefGoogle Scholar
  9. Haas H, Chen C, O’Brien D (2017) A guide to wireless networking by light. Prog Quantum Electron 55: 88–111CrossRefGoogle Scholar
  10. Hranilovic S, Kschischang FR (2006) A pixelated MIMO wireless optical communication system. IEEE J Sel Top Quantum Electron 12(4):859–874CrossRefGoogle Scholar
  11. Hu W, Gu H, Pu Q (2013) Lightsync: unsynchronized visual communication over screen-camera links. In: Proceedings of the 19th annual international conference on mobile computing & networking, ACM, pp 15–26Google Scholar
  12. Hu P, Pathak PH, Feng X, Fu H, Mohapatra P (2015) Colorbars: increasing data rate of led-to-camera communication using color shift keying. In: Proceedings of the 11th ACM conference on emerging networking experiments and technologies, ACM, pp 1–12Google Scholar
  13. IEEE-80215-WPANTM (2018) The IEEE p802.15.7m short-range optical wireless communications task group. http://www.ieee802.org/15/pub/IEE%20802_ 1%20WPA%2015_%20Revisio%20Tas%20Gr- oup.html
  14. Ito S, Matsumoto Y (2009) Visible light communication system combined with visible light ID and IrDA. ITE Technical Report 33:45–49Google Scholar
  15. Jin F, Zhang R, Hanzo L (2015) Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell. IEEE Trans Wirel Commun 14(2):1020–1034CrossRefGoogle Scholar
  16. Katz E, Bar-Ness Y (2015) Two-dimensional (2-D) spatial domain modulation methods for unipolar pixelated optical wireless communication systems. J Lightwave Technol 33(20):4233–4239CrossRefGoogle Scholar
  17. Kays R, Brauers C, Klein J (2017) Modulation concepts for high-rate display-camera data transmission. In: Communications (ICC), 2017 IEEE International Conference on, IEEE, pp 1–6Google Scholar
  18. Kim BW, Kim HC, Jung SY (2015) Display field communication: fundamental design and performance analysis. J Lightwave Technol 33(24):5269–5277CrossRefGoogle Scholar
  19. Langer KD, Grubor J, Bouchet O, Tabach ME, Walewski JW, Randel S, Franke M, Nerreter S, O’Brien DC, Faulkner GE (2008) Optical wireless communications for broadband access in home area networks. In: Anniversary international conference on transparent optical networks, pp 149–154Google Scholar
  20. Li X, Zhang R, Hanzo L (2015) Cooperative load balancing in hybrid visible light communications and WiFi. IEEE Trans Commun 63(4):1319–1329CrossRefGoogle Scholar
  21. Li M, Hu Y, Tang Y, Yao X (2017) Frame loss detecting for unobtrusive display camera visible light communication. In: Signal processing, communications and computing (ICSPCC), 2017 IEEE international conference on, IEEE, pp 1–6Google Scholar
  22. Li M, Hu Y, Tang Y, Yao X, Tao S, Meng Y (2018a) Multi-imaging direction design for unobtrusive display-camera visible light communication. In: Submitted to international conference on wireless communications and signal processingGoogle Scholar
  23. Li M, Hu Y, Yao X, Tang Y, Shen Z (2018b) Frame synchronization compensation algorithm for visible light implicit imaging communication. Acta Opt Sin 38(1):68–76Google Scholar
  24. Liu HS, Pang G (2003) Positioning beacon system using digital camera and LEDs. IEEE Trans Veh Technol 52(2):406–419CrossRefGoogle Scholar
  25. Luo P, Ghassemlooy Z, Le Minh H, Tang X, Tsai HM (2014) Undersampled phase shift on-off keying for camera communication. In: Wireless communications and signal processing (WCSP), 2014 sixth international conference on, IEEE, pp 1–6Google Scholar
  26. Luo P, Ghassemlooy Z, Le Minh H, Tsai HM, Tang X (2015) Undersampled-pam with subcarrier modulation for camera communications. In: Proc Opto-Electron Commun Conf (OECC), pp 1–3Google Scholar
  27. Marshoud H, Kapinas VM, Karagiannidis GK, Muhaidat S (2015) Non-orthogonal multiple access for visible light communications. IEEE Photon Technol Lett 28(1):51–54CrossRefGoogle Scholar
  28. Miya I, Kajikawa Y (2010) Base station layout support system for indoor visible light communication. In: Communications and information technologies (ISCIT), 2010 international symposium on, IEEE, pp 661–666Google Scholar
  29. Mondal MRH, Panta KR, Armstrong J (2010) Performance of two dimensional asymmetrically clipped optical OFDM. In: GLOBECOM workshops (GC Wkshps), 2010 IEEE. IEEE, pp 995–999Google Scholar
  30. Nikookar H (2013) Wavelet radio: adaptive and reconfigurable wireless systems based on wavelets. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Pathak PH, Feng X, Hu P, Mohapatra P (2015) Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutorials 17(4):2047–2077CrossRefGoogle Scholar
  32. Rahaim M, Little T (2013) SINR analysis and cell zooming with constant illumination for indoor VLC networks. In: Optical wireless communications (IWOW), 2013 2nd international workshop on, IEEE, pp 20–24Google Scholar
  33. Rajagopal N, Lazik P, Rowe A (2014) Visual light landmarks for mobile devices. In: Information processing in sensor networks, IPSN-14 proceedings of the 13th international symposium on, IEEE, pp 249–260Google Scholar
  34. Roberts RD (2013) Undersampled frequency shift on-off keying (UFSOOK) for camera communications (camcom). In: Wireless and optical communication conference (WOCC), 2013 22nd, IEEE, pp 645–648Google Scholar
  35. Roberts RD, Rajagopal S, Lim SK (2011) IEEE 802.15.7 physical layer summary. In: GLOBECOM workshops, pp 772–776Google Scholar
  36. Saha N, Ifthekhar MS, Le NT, Jang YM (2015) Survey on optical camera communications: challenges and opportunities. IET Optoelectronics 9(5):172–183CrossRefGoogle Scholar
  37. Sewaiwar A, Tiwari SV, Chung YH (2015a) Mobility support for full-duplex multiuser bidirectional VLC networks. IEEE Photon J 7(6):1–9Google Scholar
  38. Sewaiwar A, Tiwari SV, Chung YH (2015b) Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network. Opt Commun 339:153–156CrossRefGoogle Scholar
  39. Shu X, Wu X (2016) Frame untangling for unobtrusive display-camera visible light communication. In: Proceedings of the 2016 ACM on multimedia conference. ACM, pp 650–654Google Scholar
  40. Tao S, Yu H, Li Q, Tang Y (2018) Performance analysis of gain ratio power allocation strategies for non-orthogonal multiple access in indoor visible light communication networks. EURASIP J Wirel Commun Netw 2018(1):154CrossRefGoogle Scholar
  41. Wang Y, Shao Y, Shang H, Lu X (2013) 875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system. In: Optical fiber communication conference and exposition and the national fiber optic engineers conference, pp 1–3Google Scholar
  42. Wang Y, Wu X, Haas H (2016) Fuzzy logic based dynamic handover scheme for indoor Li-Fi and RF hybrid network. In: Communications (ICC), 2016 IEEE international conference on. IEEE, pp 1–6Google Scholar
  43. Wang Z, Wang Q, Huang W, Xu Z (2017) Visible light communications modulation and signal processing. Wiley, Inc., HobokenCrossRefGoogle Scholar
  44. Wong KM, Wu J, Davidson TN, Jin Q (1997) Wavelet packet division multiplexing and wavelet packet design under timing error effects. IEEE Trans Signal Process 45(12):2877–2890CrossRefGoogle Scholar
  45. Woo G, Lippman A, Raskar R (2012) VRCodes: unobtrusive and active visual codes for interaction by exploiting rolling shutter. In: Mixed and augmented reality (ISMAR), 2012 IEEE international symposium on. IEEE, pp 59–64Google Scholar
  46. Yamazato T, Takai I, Okada H, Fujii T, Yendo T, Arai S, Andoh M, Harada T, Yasutomi K, Kagawa K, et al (2014) Image-sensor-based visible light communication for automotive applications. IEEE Commun Mag 52(7):88–97CrossRefGoogle Scholar
  47. Yin L, Popoola WO, Wu X, Haas H (2016) Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Trans Commun 64(12):5162–5175CrossRefGoogle Scholar
  48. Yuan W, Gruteser M, Ashok A, Mandayam N, Dana K (2012) Dynamic and invisible messaging for visual MIMO. In: Applications of computer vision, IEEE workshop on (WACV), vol 00, pp 345–352. www.doi.ieeecomputersociety.org/10.1109/WACV.2012.6162992

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yanqun Tang
    • 1
    • 2
    Email author
  • Siyu Tao
    • 2
  • Wei Li
    • 3
  • Zhengyu Zhu
    • 4
  • Zhiguo Shi
    • 5
  1. 1.School of Electronics and Communication EngineeringSun Yat-sen UniversityShenzhenChina
  2. 2.National Digital Switching System Engineering & Technological Research CenterZhengzhouChina
  3. 3.National University of Defense TechnologyChangshaChina
  4. 4.Zhengzhou UniversityZhengzhouChina
  5. 5.Zhejiang UniversityHangzhouChina

Section editors and affiliations

  • Zhiguo Shi
    • 1
  1. 1.Zhejiang UniversityHangzhouChina