Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Brownian Motion

  • Mohammad Upal MahfuzEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_231-1

Synonyms

Definition

Brownian motion is the random motion of particles, e.g., molecules, suspended in the fluid medium, e.g., liquid and gas, that results from a large number of collisions those particles experience with the fast-moving particles of the fluid medium.

Acronyms

BM

Brownian motion

MC

Molecular communication

MRBP

Molecule-receptor binding process

RN

Receiving nanomachine

TN

Transmitting nanomachine

VRV

Virtual reception volume

Historical Background

Brownian motion (BM) is an important phenomenon that is the basis of diffusion-based propagation of molecules in molecular communication (MC) and, therefore, is the fundamental principle behind diffusion-based MC in the field of nanoscale communication networks, also known as nanonetworks. In the field of natural and applied sciences, BM is also popularly known as random walk motion of particles. The history of BM is quite old. Random...

This is a preview of subscription content, log in to check access.

References

  1. Ahmadzadeh A, Jamali V, Noel A, Schober R (2017) Diffusive mobile molecular communications over time-variant channels. IEEE Commun Lett 21(6):1265–1268CrossRefGoogle Scholar
  2. Ahmadzadeh A, Jamali V, Schober R (2018) Stochastic channel modeling for diffusive mobile molecular communication systems. IEEE Trans Commun 66(12):6205–6220CrossRefGoogle Scholar
  3. Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw J (Elsevier) 52:2260–2279CrossRefGoogle Scholar
  4. Atakan B, Akan OB (2010) Deterministic capacity of information flow in molecular nanonetworks. Nano Commun Netw 1(1):31–42CrossRefGoogle Scholar
  5. Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  6. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219CrossRefGoogle Scholar
  7. Brown R (1828) A brief account of microscopical observations. Philos Mag 4:161–173CrossRefGoogle Scholar
  8. Bush SF (2010) Nanoscale communication networks. Artech House, BostonGoogle Scholar
  9. Cao TN, Trinh DP, Jeong Y, Shin H (2015) Anomalous diffusion in molecular communication. IEEE Commun Lett 19(10):1674–1677CrossRefGoogle Scholar
  10. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, UKzbMATHGoogle Scholar
  11. Culbertson CT, Jacobson SC, Michael Ramsey J (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56(2):365–373CrossRefGoogle Scholar
  12. Delgado J, Alves M, Guedes de Carvalho J (2005) A simple and inexpensive technique to measure molecular diffusion coefficients. J Phase Equilib Diffus 26(5):447–451CrossRefGoogle Scholar
  13. Eckford AW (2007) Nanoscale communication with Brownian motion. In: 2007 41st annual conference on information sciences and systems, 14–16 Mar 2007Google Scholar
  14. Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann Phys 17:549–560CrossRefGoogle Scholar
  15. Felicetti L, Femminella M, Reali G (2013) Simulation of molecular signaling in blood vessels: software design and application to atherogenesis. Nano Commun Netw 4(3):98–119CrossRefGoogle Scholar
  16. Freitas RA (1999) Nanomedicine, Vol. 1: Basic capabilities, 1st edn. Landes Bioscience, AustinGoogle Scholar
  17. Gohari A, Mirmohseni M, Nasiri-Kenari M (2016) Information theory of molecular communication: directions and challenges. IEEE Trans Mol Biol Multi-Scale Commun 2(2):120–142CrossRefGoogle Scholar
  18. Gul E, Atakan B, Akan OB (2010) NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun Netw 1(2):138–156CrossRefGoogle Scholar
  19. Haselmayr W, Aejaz SMH, Asyhari AT, Springer A, Guo W (2017) Transposition errors in diffusion-based mobile molecular communication. IEEE Commun Lett 21(9):1973–1976CrossRefGoogle Scholar
  20. Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4):046602MathSciNetCrossRefGoogle Scholar
  21. IEEE (2016) IEEE recommended practice for nanoscale and molecular communication framework. IEEE Std 1906.1-2015, pp 1–64Google Scholar
  22. Jamali V, Ahmadzadeh A, Wicke W, Noel A, Schober R (2018) Channel modeling for diffusive molecular communication – a tutorial review. In: The proceedings of IEEE (submitted to)Google Scholar
  23. Kadloor S, Adve RS, Eekford AW (2012) Molecular communication using Brownian motion with drift. IEEE Trans Nanobioscience 11(2):89–99CrossRefGoogle Scholar
  24. Koo B, Lee C, Yilmaz HB, Farsad N, Eckford A, Chae C (2016) Molecular MIMO: from theory to prototype. IEEE J Sel Areas Commun 34(3):600–614CrossRefGoogle Scholar
  25. Llatser I, Demiray D, Cabellos-Aparicio A, Altilar DT, Alarcón E (2014) N3Sim: simulation framework for diffusion-based molecular communication nanonetworks. Simul Model Pract Theory 42:210–222CrossRefGoogle Scholar
  26. Mahfuz MU, Makrakis D, Mouftah HT (2014) A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication. IEEE Trans Nanobioscience 13(3):208–222CrossRefGoogle Scholar
  27. Mahfuz MU, Makrakis D, Mouftah HT (2016) Concentration-encoded subdiffusive molecular communication: theory, channel characteristics, and optimum signal detection. IEEE Trans Nanobioscience 15(6):533–548CrossRefGoogle Scholar
  28. Mai TC, Egan M, Duong TQ, Renzo MD (2017) Event detection in molecular communication networks with anomalous diffusion. IEEE Commun Lett 21(6):1249–1252CrossRefGoogle Scholar
  29. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetCrossRefGoogle Scholar
  30. Nakano T, Okaie Y, Jian-Qin L (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16(6):797–800CrossRefGoogle Scholar
  31. Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  32. Nakano T, Suda T, Okaie Y, Moore M, Vasilakos A (2014) Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans Nanobioscience 13:169CrossRefGoogle Scholar
  33. Noel A, Cheung KC, Schober R, Makrakis D, Hafid A (2017) Simulating with AcCoRD: actor-based communication via reaction–diffusion. Nano Commun Netw 11:44–75CrossRefGoogle Scholar
  34. Pierobon M, Akyildiz IF (2010) A physical end-to-end model for molecular communication in nanonetworks. IEEE J Sel Areas Commun 28(4):602–611CrossRefGoogle Scholar
  35. Pierobon M, Akyildiz IF (2011) Noise analysis in ligand-binding reception for molecular communication in nanonetworks. IEEE Trans Signal Process 59(9):4168–4182MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Wisconsin-Green BayGreen BayUSA

Section editors and affiliations

  • Adam Noel
    • 1
  1. 1.University of Warwick, UKWarwickUK