Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Drug Delivery via Nanomachines

  • Yifan ChenEmail author
  • Yu Zhou
  • Neda Sharifi
  • Ross Murch
  • Geoffrey Holmes
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_224-1

Synonyms

Definition

Drug delivery via nanomachines is one type of targeted drug delivery (TDD) technologies that delivers medicament to the designated area in vivo by using devices ranging in size from 0.1 to 10 μm and constructed of nanoscale components. Various terms such as nanomachine, nanorobot, nanobot, nanoid, nanite, and nanomite have been used to describe such devices. These nanomachines are loaded with drugs and targeted solely to diseased tissue under the manipulation and guidance of an external monitoring system. The purpose of this technology is to remarkably enhance locoregional therapies for disease treatment while reducing the side-effects of the drug on healthy cells.

Historical Background

In traditional drug delivery systems such as oral ingestion or intravascular injection, the medication is distributed throughout the body via the systemic blood circulation. For most therapeutic agents, only a small portion of the medication reaches the organ...

This is a preview of subscription content, log in to check access.

References

  1. Artzi L, Bayer EA, Moraïs S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95CrossRefGoogle Scholar
  2. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Con Rel 153(3):153–198CrossRefGoogle Scholar
  3. Bertrand N, Leroux JC (2011) The journey of a drug carrier in the body: an anatomo-physiological perspective. J Con Rel 161(2):152–163CrossRefGoogle Scholar
  4. Chahibi Y, Pierobon M, Akyildiz IF (2015a) Pharmacokinetic modeling and biodistribution estimation through the molecular communication paradigm. IEEE Trans Biomed Eng 62(10):2410–2420CrossRefGoogle Scholar
  5. Chahibi Y, Akyildiz IF, Balasubramaniam S, Koucheryavy Y (2015b) Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Trans Biomed Eng 62(7):1683–1695CrossRefGoogle Scholar
  6. Chen Y, Zhou Y, Murch R, Kosmas P (2017a) Modeling contrast-imaging-assisted optimal targeted drug delivery: a touchable communication channel estimation and waveform design perspective. IEEE Trans Nanobioscience 16(3):203–215CrossRefGoogle Scholar
  7. Chen XZ, Hoop M, Mushtaq F et al (2017b) Recent developments in magnetically driven micro-and nanorobots. Appl Mater Today 9:37–48CrossRefGoogle Scholar
  8. Chude-Okonkwo UA, Malekian R, Maharaj BS (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobioscience 15(3):230–245CrossRefGoogle Scholar
  9. Femminella M, Reali G, Vasilakos AV (2015) A molecular communications model for drug delivery. IEEE Trans Nanobioscience 14(8):935–945CrossRefGoogle Scholar
  10. Feynman RP (1992) There’s plenty of room at the bottom. J Mic Sys 1(1):60–66CrossRefGoogle Scholar
  11. Gao ZB, Zhang LN, Sun YJ (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111CrossRefGoogle Scholar
  12. Guo F, Li P, French JB, Mao Z, Zhao H, Li S, Nama N, Fick JR, Benkovic SJ, Huang TJ (2015) Controlling cell–cell interactions using surface acoustic waves. Proc Natl Acad Sci 112(1):43–48CrossRefGoogle Scholar
  13. Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21):12273–12286CrossRefGoogle Scholar
  14. IEEE NanoCom Standards Development Working Group (2017) IEEE recommended practice for nanoscale and molecular communication framework, IEEE standard 1906.1–2015, 2016Google Scholar
  15. Kim H, Ali J, Cheang UK, Jeong J, Jin SK, Min JK (2016) Micro manipulation using magnetic microrobots. J Bionic Eng 13(4):515–524CrossRefGoogle Scholar
  16. Liu C, Xu T, Xu LP, Zhang X (2017) Controllable swarming and assembly of micro/nanomachines. Micromachines 9(1):9–10CrossRefGoogle Scholar
  17. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (Apr. 2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582CrossRefGoogle Scholar
  18. Sagnella S, Drummond C (2012) Drug delivery: a nanomedicine approach. Aust Biochemist 43:5–8Google Scholar
  19. Trafton A (2009) Tumors targeted using tiny gold particles. MIT Tech Talk 53(24):4–4Google Scholar
  20. Zhou Y, Chen Y, Murch RD (2018) Simulation framework for touchable communication on NS3Sim. J Nano Comm Netw 16:26–36CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yifan Chen
    • 1
    Email author
  • Yu Zhou
    • 2
    • 3
  • Neda Sharifi
    • 1
  • Ross Murch
    • 3
  • Geoffrey Holmes
    • 1
  1. 1.The University of WaikatoHamiltonNew Zealand
  2. 2.Southern University of Science and TechnologyShenzhenChina
  3. 3.The Hong Kong University of Science and TechnologyHong KongChina

Section editors and affiliations

  • Adam Noel
    • 1
  1. 1.University of Warwick, UKWarwickUK