Advertisement

Euglenida

  • Brian S. Leander
  • Gordon Lax
  • Anna Karnkowska
  • Alastair G. B. Simpson
Living reference work entry

Abstract

Euglenids are a group of >1500 described species of single-celled flagellates with diverse modes of nutrition, including phagotrophy and photoautotrophy. The group also encompasses a clade of specialist “primary” osmotrophs (Aphagea) and, very likely, one group of phagotrophs that are ectosymbiont-supporting anaerobes (Symbiontida). Almost all euglenids are free-living. The (usually) one or two emergent flagella have thick paraxonemal (paraxial) rods and originate in a deep pocket/reservoir, while the cell surface is almost always supported by a pellicle of parallel proteinaceous strips underlain by microtubules. Cells with 4–12 strips are rigid; most of those with more strips (typically ~20–40) have them arranged helically and exhibit active cell deformation called “euglenid motion” or “metaboly.” Most phagotrophic euglenids are surface-associated bacterivores or eukaryovores that employ a flagellar gliding motility; they are abundant in marine and freshwater sediments. Photoautotrophic species (Euglenophyceae) constitute a single subclade within euglenids and have a plastid (chloroplast) of secondary endosymbiotic origin, with three bounding membranes. The plastid is typically green, with chlorophylls a + b, and was derived from a chloroplastidan alga related to the Pyramimonadales. Photoautotrophic euglenids move primarily by swimming, and most (members of the taxon Euglenales, e.g., Euglena) have a single emergent flagellum and are generally restricted to fresh and brackish waters.

Keywords

Cytoskeleton Endosymbiosis Euglenozoa Evolution Feeding apparatus Pellicle Phylogeny Ultrastructure 

Notes

Acknowledgments

The authors thank Won Je Lee and Bożena Zakryś for extensive use of their unpublished micrographs. BSL and AGBS gratefully acknowledge the support of the Canadian Institute for Advanced Research (CIfAR), program in Integrated Microbial Biodiversity. AK was supported by a grant from the Tula Foundation to the Centre for Microbial Biodiversity and Evolution at UBC.

References

  1. Angeler, D. G., Müllner, A. N., & Schagerl, M. (1999). Comparative ultrastructure of the cytoskeleton and nucleus of Distigma (Euglenozoa). European Journal of Protistology, 35, 309–318.CrossRefGoogle Scholar
  2. Bennett, M. S., & Triemer, R. E. (2012). A new method for obtaining nuclear gene sequences from field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (Phacus) horridus (Euglenophyta). Journal of Phycology, 48, 254–260.PubMedCrossRefGoogle Scholar
  3. Bennett, M., Wiegert, K. E., & Triemer, R. E. (2012). Comparative chloroplast genomics between Euglena viridis and Euglena gracilis (Euglenophyta). Phycologia, 51, 711–718.CrossRefGoogle Scholar
  4. Bennett, M. S., & Triemer, R. E. (2014). The genus Cyclidiopsis: An obituary. Journal of Eukaryotic Microbiology, 61, 166–172.PubMedCrossRefGoogle Scholar
  5. Bennett, M., Wiegert, K. E., & Triemer, R. E. (2014). Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia, 53, 66–73.Google Scholar
  6. Bennett, M. S., & Triemer, R. E. (2015). Chloroplast genome evolution in the Euglenaceae. Journal of Eukaryotic Microbiology, 62, 773–785.PubMedCrossRefGoogle Scholar
  7. Belhadri, A., Bayle, D., & Brugerolle, G. (1992). Biochemical and immunological characterization of intermicrotubular cement in the feeding apparatus of phagotrophic euglenoids: Entosiphon, Peranema, and Ploeotia. Protoplasma, 168, 113–124.Google Scholar
  8. Belhadri, A., & Brugerolle, G. (1992). Morphogenesis of the feeding apparatus of Entosiphon sulcatum: An immunofluorescence and ultrastructural study. Protoplasma, 168, 125–135.CrossRefGoogle Scholar
  9. Boenigk, J., & Arndt, H. (2002). Bacterivory by heterotrophic flagellates: Community structure and feeding strategies. Antonie Van Leeuwenhoek Journal of Microbiology, 81, 465–480.CrossRefGoogle Scholar
  10. Bouck, G. B., Rogalski, A., & Valaitis, A. (1978). Surface organization and composition of Euglena. II. Flagellar mastigonemes. The Journal of Cell Biology, 77, 805–826.Google Scholar
  11. Breglia, S. A., Slamovits, C. H., & Leander. (2007). Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. Journal of Eukaryotic Microbiology, 52, 86–94.CrossRefGoogle Scholar
  12. Breglia, S. A., Yubuki, N., Hoppenrath, M., & Leander, B. S. (2010). Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiology, 10, 145.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Breglia, S. A., Yubuki, N., & Leander, B. S. (2013). Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: A eukaryovorous euglenid with a cytoproct. Journal of Eukaryotic Microbiology, 60, 107–120.PubMedCrossRefGoogle Scholar
  14. Brosnan, S., Brown, P. J. P., Farmer, M. A., & Triemer, R. E. (2005). Morphological separation of the euglenoid genera Trachelomonas and Strombomonas (Euglenophyta) based on lorica development and posterior strip reduction. Journal of Phycology, 41, 590–605.CrossRefGoogle Scholar
  15. Brosnan, S., Shin, W., Kjer, K. M., & Triemer, R. E. (2003). Phylogeny of the photoautotrophic euglenophytes inferred from the nuclear SSU and partial LSU rDNA. International Journal of Systematic and Evolutionary Microbiology, 53, 1175–1186.PubMedCrossRefGoogle Scholar
  16. Brown, P. J. P., Leander, B. S., & Farmer, M. A. (2002). Redescription of Euglena rustica (Euglenophyceae), a rare marine euglenophyte from the intertidal zone. Phycologia, 41, 445–452.CrossRefGoogle Scholar
  17. Brown, P. J. P., Zakryś, B., & Farmer, M. A. (2003). Plastid morphology, ultrastructure, and development in Colacium and the loricate euglenophytes (Euglenophyceae). Journal of Phycology, 39, 115–121.CrossRefGoogle Scholar
  18. Brugerolle, G. (1985). Des trichocystes chez les bodonides, un caractère phylogénétique supplémentaire entre Kinetoplastida et Euglenida. Protistologica, 21, 339–348.Google Scholar
  19. Brumpt, E., & Lavier, G. (1924). Un nouvel Euglénien polyflagellé parasite du têtard de Leptodactylus ocellatus au Brésil. Annales de Parasitologie, 2, 248–252.Google Scholar
  20. Buetow, D. E. (1968). The Biology of Euglena. New York: Academic Press.Google Scholar
  21. Busse, I., & Preisfeld, A. (2002). Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: Molecular evolution and phylogenetic inference. Journal of Molecular Evolution, 55, 757–767.PubMedCrossRefGoogle Scholar
  22. Busse, I., Patterson, D. J., & Preisfeld, A. (2003). Phylogeny of phagotrophic euglenids (Euglenozoa): A molecular appraoch based on culture material and environmental samples. Journal of Phycology, 39, 828–836.CrossRefGoogle Scholar
  23. Canaday, J., Tessier, L. H., Imbault, P., & Paulus, F. (2001). Analysis of Euglena gracilis alpha-, beta- and gamma-tubulin genes: Introns and pre-mRNA maturation. Molecular Genetics and Genomics, 265, 153–160.PubMedCrossRefGoogle Scholar
  24. Cann, J. P., & Pennick, N. C. (1986). Observations on Petalomonas cantuscygni, n. sp., a new halo-tolerant strain. Archiv für Protistenkunde, 132, 63–71.CrossRefGoogle Scholar
  25. Cavalier-Smith, T. (2016). Higher classification and phylogeny of Euglenozoa. European Journal of Protistology, 56, 250–276.PubMedCrossRefGoogle Scholar
  26. Cavalier-Smith, T., Chao, E. E., & Vickerman, K. (2016). New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing. European Journal of Protistology, 56, 147–170.PubMedCrossRefGoogle Scholar
  27. Chen, Y. T. (1950). Investigations of the biology of Peranema trichophorum (Euglenineae). Quarterly Journal of Microscopical Science, 91, 279–308.PubMedGoogle Scholar
  28. Chan, Y.-F., Moestrup, Ø., & Chang, J. (2013). On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). European Journal of Protistology, 49, 15–31.PubMedCrossRefGoogle Scholar
  29. Ciugulea, I., Nudelman, M. A., Brosnan, S., & Triemer, R. E. (2008). Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. Journal of Phycology, 44, 406–418.PubMedCrossRefGoogle Scholar
  30. Cook, J. R., & Roxby, R. (1985). Physical properties of a plasmid-like DNA from Euglena gracilis. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 824, 80–83.CrossRefGoogle Scholar
  31. Dabbagh, N., & Preisfeld, A. (2017). The chloroplast genome of Euglena mutabilis – Cluster arrangement, intron analysis, and intrageneric trends. Journal of Eukaryotic Microbiology, 64, 31–44.Google Scholar
  32. DaCunha, A. M. (1913). Contribuição para o conhecimento da fauna protozoarios do Brazil II. Memórias do Instituto Oswaldo Cruz, 6, 169–179. [in Portuguese].Google Scholar
  33. Dasgupta, S., Fang, J., Brake, S. S., Hasiotis, S. T., & Zhang, L. (2012). Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chemical Geology, 306, 139–145.CrossRefGoogle Scholar
  34. Dawson, N. S., & Walne, P. L. (1991). Structural characterization of Eutreptia (Euglenophyta). III. Flagellar structure and possible function of the paraxial rods. Phycologia, 30, 415–437.Google Scholar
  35. Deflandre, G. (1930). Strombomonas, nouveau genre d’Euglénacées (Trachelomonas EHR. pro parte). Archiv für Protistenkunde, 69, 551–614.Google Scholar
  36. Dietrich, D., & Arndt, H. (2000). Biomass partitioning of benthic microbes in a Baltic inlet: Relationships between bacteria, algae, heterotrophic flagellates and ciliates. Marine Biology, 136, 309–322.CrossRefGoogle Scholar
  37. Dobáková, E., Flegontov, P., Skalický, T., & Lukeš, J. (2015). Unexpectedly streamlined mitochondrial genome of the Euglenozoan Euglena gracilis. Genome Biology and Evolution, 7, 3358–3367.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dooijes, D., Chaves, I., Kieft, R., Dirks-Mulder, A., Martin, W., & Borst, P. (2000). Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Research, 2816, 3017–3021.CrossRefGoogle Scholar
  39. Dujardin, F. (1841). Histoire naturelle des Zoophytes. Infusoires. Paris: Roret.Google Scholar
  40. Ehrenberg, C. G. (1830). Neue Beobachtungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannten. Annalen der Physik, 9, 477–514.CrossRefGoogle Scholar
  41. Ehrenberg, C. G. (1832) [1831] Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, 1–154.Google Scholar
  42. Ehrenberg, C. G. (1835) [1833]. Dritter Beitrag zur Erkenntnis großer Organisation in der Richtung des Kleinsten Raumes. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, 145–336.Google Scholar
  43. Esson, H. J., & Leander, B. S. (2006). A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: Evidence for heterochrony in pellicle evolution. Evolution & Development, 8, 378–388.CrossRefGoogle Scholar
  44. Esson, H. J., & Leander, B. S. (2008). Novel pellicle surface patterns on Euglena obtusa Schmitz (Euglenophyta), a euglenophyte from a benthic marine environment: Implications for pellicle development and evolution. Journal of Phycology, 43, 132–141.CrossRefGoogle Scholar
  45. Farmer, M. A., & Triemer, R. E. (1988). Flagellar systems in the euglenoid flagellates. Biosystems, 21, 283–291.Google Scholar
  46. Fenchel, T., Bernard, C., Esteban, G., Finlay, B. J., Hansen, P. J., & Iversen, N. (1995). Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia, 43, 45–100.Google Scholar
  47. Forster, D., Dunthorn, M., Mahé, F., Dolan, J. R., Audic, S., Bass, D., et al. (2016). Benthic protists: The under-charted majority. FEMS Microbiology Ecology, 92, fiw120.Google Scholar
  48. Frantz, C., Ebel, C., Paulus, F., & Imbault, P. (2000). Characterization of trans-splicing in Euglenoids. Current Genetics, 37, 349–355.PubMedCrossRefGoogle Scholar
  49. Fujita, T., Aoyagi, H., Ogbonna, J. C., & Tanaka, H. (2008). Effect of mixed organic substrate on tocopherol production by Euglena gracilis in photoheterotrophic culture. Applied Microbiology and Biotechnology, 79, 371–378.PubMedCrossRefGoogle Scholar
  50. Gawryluk, R. M. R., del Campo, J., Okamoto, N., Strassert, J. F. H., Lukeš, J., Richards, T. A., et al. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology, 26, 3053–3059.PubMedCrossRefGoogle Scholar
  51. Gibbs, S. P. (1978). The chloroplasts of Euglena may have evolved from symbiotic green algae. Canadian Journal of Botany, 56, 2883–2889.CrossRefGoogle Scholar
  52. Gockel, G., & Hachtel, W. (2000). Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist, 151, 347–351.Google Scholar
  53. Gockel, G., Hachtel, W., Baier, S., Fliss, C., & Henke, M. (1994). Genes for chloroplast apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid agellate Astasia longa. Current Genetics, 26, 256–262.PubMedCrossRefGoogle Scholar
  54. Gojdics, M. (1953). The genus Euglena. Madison: The University of Wisconsin Press.Google Scholar
  55. Gray, J., & Boucot, A. J. (1989). Is Moyeria a euglenoid? Lethaia, 22, 447–456.Google Scholar
  56. Hachtel, W. (1998). A plastid genome in the heterotrophic flagellate Astasia longa. Endocytobiosis and Cell Research, 12, 191–193.Google Scholar
  57. Hadariová, L., Vesteg, M., Birčák, E., Schwartzbach, S. D., & Krajčovič, J. (2016). An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Current Genetics. doi:10.1007/s00294-016-0641-z.PubMedGoogle Scholar
  58. Hallick, R. B., Hong, L., Drager, R. G., Favreau, M. R., Monfort, A., Orsat, B., et al. (1993). Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Research, 21, 3537–3544.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.”. Proceedings of the National Academy of Sciences, 106, 3859–3864.CrossRefGoogle Scholar
  60. Hilenski, L. L., & Walne, P. L. (1983). Ultrastructure of ejectile mucocysts in Peranema trichophorum (Euglenophyceae). Journal of Protozoology, 30, 491–496.CrossRefGoogle Scholar
  61. Hilenski, L. L., & Walne, P. L. (1985). Ultrastructure of the flagella of the colorless phagotroph Peranema trichophorum (Euglenophyceae. II. Flagellar roots). Journal of Phycology, 21, 125–134.CrossRefGoogle Scholar
  62. Hrdá, Š., Fousek, J., Szabová, J., Hampl, V., & Vlček, Č. (2012). The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PloS One, 7(3), e33746.Google Scholar
  63. Huber-Pestalozzi, G. (1955). 4. Euglenophyceen. In A. Thienemann (Ed.), Das Phytoplankton des Süßwassers: Systematik und Biologie. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  64. Inui, H., Miyatake, K., Nakano, Y., & Kitaoka, S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Letters, 150, 89–93.Google Scholar
  65. Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., et al. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.Google Scholar
  66. Karnkowska-Ishikawa, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2010). Taxonomy of the Phacus oscillans (Euglenaceae) and its close relatives – Balancing morphological and molecular features. Journal of Phycology, 46, 172–182.CrossRefGoogle Scholar
  67. Karnkowska-Ishikawa, A., Milanowski, R., & Zakryś, B. (2011). The species Euglena deses revisited: New morphological and molecular data. Journal of Phycology, 47, 653–661.PubMedCrossRefGoogle Scholar
  68. Karnkowska-Ishikawa, A., Milanowski, R., Triemer, R. E., & Zakryś, B. (2012). Taxonomic revisions of morphologically similar species from two genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata, Eu. clavata). Journal of Phycology, 48, 729–739.PubMedCrossRefGoogle Scholar
  69. Karnkowska-Ishikawa, A., Milanowski, R., Triemer, R. E., & Zakryś, B. (2013). A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea. E. sociabilis and E. splendens. Journal of Phycology, 49, 616–626.PubMedCrossRefGoogle Scholar
  70. Karnkowska, A., Bennett, M. S., Watza, D., Kim, J. I., Zakryś, B., & Triemer, R. E. (2015). Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. Journal of Eukaryotic Microbiology, 62, 362–373.PubMedCrossRefGoogle Scholar
  71. Kasiborski, B. A., Bennett, M. S., & Linton, E. W. (2016). The chloroplast genome of Phacus orbicularis (Euglenophyceae): An initial datum point for the Phacaceae. Journal of Phycology, 52, 404–411.PubMedCrossRefGoogle Scholar
  72. Kim, J. I., & Shin, W. (2008). Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. Journal of Phycology, 44, 994–1000.PubMedCrossRefGoogle Scholar
  73. Kim, J. I., Shin, W., & Triemer, R. E. (2010). Multigene analyses of photosynthetic euglenoids and new family Phacaceae (Euglenales). Journal of Phycology, 46, 1278–1287.CrossRefGoogle Scholar
  74. Kim, J. I., Shin, W., & Triemer, R. E. (2013a). Phylogenetic reappraisal of the genus Monomorphina (euglenophyceae) based on molecular and morphological data. Journal of Phycology, 49, 82–91.PubMedCrossRefGoogle Scholar
  75. Kim, J. I., Shin, W., & Triemer, R. E. (2013b). Cryptic speciation in the genus Cryptoglena (euglenaceae) revealed by nuclear and plastid SSU and LSU rRNA gene. Journal of Phycology, 49, 92–102.PubMedCrossRefGoogle Scholar
  76. Kim, J. I., & Shin, W. (2014). Molecular phylogeny and cryptic diversity of the genus Phacus (Phacaceae, Euglenophyceae) and the descriptions of seven new species. Journal of Phycology, 50, 948–959.PubMedCrossRefGoogle Scholar
  77. Kim, J. I., Linton, E. W., & Shin, W. (2015). Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Frontiers in Ecology and Evolution, 3, 98.CrossRefGoogle Scholar
  78. Kim, J. I., Linton, E. W., & Shin, W. (2016). Morphological and genetic diversity of Euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae, 31, 219–230.CrossRefGoogle Scholar
  79. Kisielewska, G., Kolicka, M., & Zawierucha, K. (2015). Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. European Journal of Protistology, 51, 138–141.PubMedCrossRefGoogle Scholar
  80. Kosmala, S., Karnkowska, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2005). The phylogenetic and taxonomic position of Lepocinclis fusca comb. nova (=Euglena fusca) (Euglenaceae). Morphological and molecular justification. Journal of Phycology, 41, 258–267.CrossRefGoogle Scholar
  81. Kosmala, S., Bereza, M., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2007a). Morphological and molecular examination of relationships and epitype establishment of Phacus pleuronectes, Phacus orbicularis, and Phacus hamelii. Journal of Phycology, 43, 1071–1082.CrossRefGoogle Scholar
  82. Kosmala, S., Milanowski, R., Brzóska, K., Pękala, M., Kwiatowski, J., & Zakryś, B. (2007b). Phylogeny and systematics of the genus Monomorphina (Euglenaceae) based on morphological and molecular data. Journal of Phycology, 43, 171–185.CrossRefGoogle Scholar
  83. Kosmala, S., Karnkowska-Ishikawa, A., Milanowski, R., Kwiatowski, J., & Zakryś, B. (2009). Phylogeny and systematics of species from the genus Euglena (Euglenaceae) with axial, stellate chloroplasts based on morphological and molecular data – New taxa, emended diagnoses and epitypifications. Journal of Phycology, 45, 464–481.PubMedCrossRefGoogle Scholar
  84. Korn, E. D. (1964). The fatty acids of Euglena gracilis. Journal of Lipid Research, 53, 352–362.Google Scholar
  85. Krajčovič, J., Vesteg, M., & Schwartzbach, S. D. (2015). Euglenoid flagellates: A multifaceted biotechnology platform. Journal of Biotechnology, 202, 135–145.PubMedCrossRefGoogle Scholar
  86. Kuo, R. C., Zhang, H., Zhuang, Y., Hannick, L., & Lin, S. (2013). Transcriptomic study reveals Widespread spliced leader trans-splicing, short 5′-UTRs and potential complex carbon fixation mechanisms in the Euglenoid alga Eutreptiella sp. PloS One, 8, e60826.Google Scholar
  87. Kuznicki, L., Mikolajczyk, E., & Walne, P. L. (1990). Photobehavior of euglenoid flagellates: Theoretical and evolutionary perspectives. Plant Science, 9, 343–369.CrossRefGoogle Scholar
  88. Larsen, J. (1987). Algal studies of the Danish Wadden Sea. IV. A taxonomic study of the interstitial euglenoid flagellates. Nordic Journal of Botany, 7, 589–607.CrossRefGoogle Scholar
  89. Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24, 801–937.CrossRefGoogle Scholar
  90. Lax, G., & Simpson, A. G. B. (2013). Combining molecular data with classical morphology for uncultured phagotrophic Euglenids (Excavata): A single-cell approach. Journal of Eukaryotic Microbiology, 60, 615–625.PubMedCrossRefGoogle Scholar
  91. Leander, B. S. (2004). Did trypanosomatid parasites have photoautotrophic ancestors? Trends in Microbiology, 12, 251–258.PubMedCrossRefGoogle Scholar
  92. Leander, B. S., Esson, H. J., & Breglia, S. A. (2007). Macroevolution of complex cytoskeletal systems in euglenids. BioEssays, 29, 987–1000.PubMedCrossRefGoogle Scholar
  93. Leander, B. S., & Farmer, M. A. (2000a). Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores. Journal of Eukaryotic Microbiology, 47, 469–479.PubMedCrossRefGoogle Scholar
  94. Leander, B. S., & Farmer, M. A. (2000b). Epibiotic bacteria and a novel pattern of strip reduction on the pellicle of Euglena helicoideus (Bernard) Lemmermann. European Journal of Protistology, 36, 405–413.CrossRefGoogle Scholar
  95. Leander, B. S., & Farmer, M. A. (2001a). Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure. Journal of Eukaryotic Microbiology, 48, 202–217.PubMedCrossRefGoogle Scholar
  96. Leander, B. S., Witek, R. P., & Farmer, M. A. (2001b). Trends in the evolution of the euglenid pellicle. Evolution, 55, 2115–2135.Google Scholar
  97. Leander, B. S., Triemer, R. E., & Farmer, M. A. (2001a). Character evolution in heterotrophic euglenids. European Journal of Protistology, 37, 337–356.CrossRefGoogle Scholar
  98. Leander, B. S., & Farmer, M. A. (2001b). Evolution of Phacus (Euglenophyceae) as inferred from pellicle morphology and SSU rDNA. Journal of Phycology, 37, 143–159.CrossRefGoogle Scholar
  99. Lee, W. J., & Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–562.CrossRefGoogle Scholar
  100. Lee, W. J., Blackmore, R., & Patterson, D. J. (1999). Australian records of two lesser known genera of heterotrophic euglenids – Chasmostoma Massart, 1920 and Jenningsia Schaeffer, 1918. Protistology, 1, 10–16.Google Scholar
  101. Lee, W. J., & Simpson, A. G. B. (2014a). Ultrastructure and molecular phylogenetic position of Neometanema parovale sp. nov. (Neometanema gen. nov.), a marine phagotrophic euglenid with skidding motility. Protist, 165, 452–472.PubMedCrossRefGoogle Scholar
  102. Lee, W. J., & Simpson, A. G. B. (2014b). Morphological and molecular characterisation of Notosolenus urceolatus Larsen and Patterson 1990, a member of an understudied deep-branching euglenid group (petalomonads). Journal of Eukaryotic Microbiology, 61, 463–479.PubMedCrossRefGoogle Scholar
  103. Leedale, G. F. (1967). Euglenoid Flagellates. Englewood Cliffs: Prentice Hall.Google Scholar
  104. Linton, E. W., & Triemer, R. E. (1999). Reconstruction of the feeding apparatus in Ploeotia costata (Euglenophyta) and its relationship to other euglenoid feeding apparatuses. Journal of Phycology, 35, 313–324.CrossRefGoogle Scholar
  105. Linton, E. W., Hittner, D., Lewandowski, C., Auld, T., & Triemer, R. E. (1999). A molecular study of euglenoid phylogeny using small subunit rDNA. Journal of Eukaryotic Microbiology, 46, 217–223.PubMedCrossRefGoogle Scholar
  106. Linton, E. W., Nudelman, M. A., Conforti, V., & Triemer, R. E. (2000). A molecular analysis of the euglenophytes using SSU rDNA. Journal of Phycology, 36, 740–746.CrossRefGoogle Scholar
  107. Linton, E. W., Karnkowska-Ishikawa, A., Kim, J. I., Shin, W., Bennett, M., Kwiatowski, J., Zakryś, B., & Triemer, R. E. (2010). Reconstructing euglenoid evolutionary relationships using three genes: Nuclear SSU and LSU, and chloroplast 16S rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist, 161, 603–619.Google Scholar
  108. Łukomska-Kowalczyk, M., Karnkowska, A., Milanowski, R., Łach, Ł., & Zakryś, B. (2015). Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses. Journal of Phycology, 51, 1147–1157.PubMedCrossRefGoogle Scholar
  109. Łukomska-Kowalczyk, M., Karnkowska, A., Krupska, M., Milanowski, R., & Zakryś, B. (2016). DNA barcoding in autotrophic euglenids: Evaluation of COI and 18s rDNA. Journal of Phycology, 52, 951–960.Google Scholar
  110. Marin, B., Palm, A., Klingberg, M., & Melkonian, M. (2003). Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist, 154, 99–145.PubMedCrossRefGoogle Scholar
  111. Marrs, J. A., & Bouck, B. (1992). The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins. Journal of Cell Biology, 118, 1465–1475.PubMedCrossRefGoogle Scholar
  112. McLachlan, J. L., Seguel, M. R., & Fritz, L. (1994). Tetraeutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): A quadriflagellate, phototrophic marine euglenoid. Journal of Phycology, 30, 538–544.CrossRefGoogle Scholar
  113. Melkonian, M., Robenek, H., & Rassat, J. (1982). Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. Journal of Cell Science, 55, 115–135.PubMedGoogle Scholar
  114. Mereschowsky, K. S. (1877). Etjudy nad prostejsimi zivotnymi severa Rossii. Trudy Imperatorskago S.-Peterburgskago Obshchestva Estestvoispytatelei, 8, 1–299. [in Russian].Google Scholar
  115. Meyer, A., Cirpus, P., Ott, C., Schlecker, R., Zähringer, U., & Heinz, E. (2003). Biosynthesis of docosahexaenoic acid in Euglena gracilis: Biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry, 42, 9779–9788.Google Scholar
  116. Milanowski, R., Zakryś, B., & Kwiatowski, J. (2001). Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg. International Journal of Systematic and Evolutionary Microbiology, 51, 773–781.PubMedCrossRefGoogle Scholar
  117. Milanowski, R., Kosmala, S., Zakrys, B., & Kwiatowski, J. (2006). Phylogeny of photoautotrophic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. Journal of Phycology, 42, 721–730.CrossRefGoogle Scholar
  118. Milanowski, R., Karnkowska, A., Ishikawa, T., & Zakryś, B. (2014). Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Molecular Biology and Evolution, 31, 584–593.Google Scholar
  119. Mignot, J.-P. (1962). Étude du noyau de l’euglénien Scytomonas pusilla Stein, pendant la division et la copulation. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 254, 1864–1866. [in French].PubMedGoogle Scholar
  120. Mignot, J.-P. (1965). Ultrastructure des eugleniens. I. Protistologica, 1, 5–15. [in French].Google Scholar
  121. Mignot, J.-P. (1966). Structure et ultrastructure de quelques Euglenomonadines. Protistologica, 2, 51–117. [in French].Google Scholar
  122. Mignot, J.-P., & Hovasse, R. (1973). Nouvelle contribution à la connaissance des trichocystes: les organites grillages d’Entosiphon sulcatum (Flagellata, Euglenida). Protistologica, 9, 373–391. [in French].Google Scholar
  123. Moestrup, Ø. (2000). The flagellate cytoskeleton. Introduction of a general terminology for microtubular flagellar roots in protists. In B. S. C. Leadbeater & J. C. Green (Eds.), Flagellates, unity, diversity and evolution (pp. 69–94). London: Taylor & Francis.Google Scholar
  124. Monfils, A. K., Triemer, R. E., & Bellairs, E. F. (2011). Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia, 50, 156–169.CrossRefGoogle Scholar
  125. Montegut-Felkner, A. E., & Triemer, R. E. (1997). Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. Journal of Phycology, 33, 512–519.CrossRefGoogle Scholar
  126. Müllner, A. N., Angeler, D. G., Samuel, R., Linton, E. W., & Triemer, R. E. (2001). Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. International Journal of Systematic and Evolutionary Microbiology, 51, 783–791.PubMedCrossRefGoogle Scholar
  127. Nisbet, B. (1974). An ultrastructural study of the feeding apparatus of Peranema trichophorum. Journal of Protozoology, 21, 39–48.CrossRefGoogle Scholar
  128. Nudelman, M. A., Rossi, M. S., Conforti, V., & Triemer, R. E. (2003). Phylogeny of Euglenophyceae based on small subunit rDNA sequences: Taxonomic implications. Journal of Phycology, 39, 226–235.CrossRefGoogle Scholar
  129. O’Neill, E. C., Trick, M., Henrissat, B., & Field, R. A. (2015). Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspectives on Science, 6, 84–93.CrossRefGoogle Scholar
  130. Patterson, D. J., & Larsen, J. (1992). A perspective on protistan nomenclature. The Journal of Protozoology, 39, 125–131.CrossRefGoogle Scholar
  131. Pellegrini, M. (1980). Three-dimensional reconstruction of organelles in Euglena gracilis Z. II. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous cultures during bleaching. Journal of Cell Science, 46, 313–334.PubMedGoogle Scholar
  132. Perty, M. (1849). Über vertikale Verbreitung mikroskopischer Lebensformen. Naturforschende Gesellschaft in Bern Mittheilungen, 153–167. [in German].Google Scholar
  133. Perty, M. (1852). Zur Kenntniss kleinster Lebensformen nach Bau, Funktionen, Systematik, mit Specialverzeichniss der in der Schweiz beobachteten. Bern: Jent & Reinert. [in German].Google Scholar
  134. Petroni, G., Spring, S., Schleifer, K.-H., Verni, F., & Rosati, G. (2000). Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proceedings of the National Academy of Science, 97, 1813–1817.Google Scholar
  135. Pombert, J.-F., James, E. R., Janouškovec, J., Keeling, P. J., & McCutcheon, J. (2012). Evidence for transitional stages in the evolution of Euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PloS One, 12, e53433.CrossRefGoogle Scholar
  136. Popova, T. G. (1966). Flora sporovych rastenij SSSR 8. [Flora plantarum cryptogamarum URSS], Euglenophyta (Vol. 1). Moskva-Leningrad: Nauka. [in Russian].Google Scholar
  137. Popova, T. G., & Safonova, T. A. (1976). Flora sporovych rastenij SSSR, 9. [Flora plantarum cryptogamarum URSS], Euglenophyta (Vol. 2). Moskva-Leningrad: Nauka. [in Russian].Google Scholar
  138. Preisfeld, A., Busse, I., Klingberg, M., Talke, S., & Ruppel, H. G. (2001). Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). International Journal of Systematic and Evolutionary Microbiology, 51, 751–758.PubMedCrossRefGoogle Scholar
  139. Pringsheim, E. G. (1953). Observations on some species of Trachelomonas grown in culture. New Phytologist, 52, 93–113.CrossRefGoogle Scholar
  140. Pringsheim, E. G. (1956). Contributions towards a monograph of the genus Euglena. Nova Acta Leopoldina, 18, 1–168.Google Scholar
  141. Ravel-Chapuis, P. (1988). Nuclear rDNA in Euglena gracilis: Paucity of chromosomal units and replication of extrachromosomal units. Nucleic Acids Research, 16, 4801–4810.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rodríguez-Zavala, J. S., Ortiz-Cruz, M. A., Mendoza-Hernández, G., & Moreno-Sánchez, R. (2010). Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. Journal of Applied Microbiology, 1096, 2160–2172.CrossRefGoogle Scholar
  143. Roy, J., Faktorova, D., Lukes, J., & Burger, G. (2007). Unusual mitochondrial genome structures throughout the Euglenozoa. Protist, 158, 385–396.PubMedCrossRefGoogle Scholar
  144. Saito, A., Suetomo, Y., Arikawa, M., Omura, G., Khan, S. M. M. K., Kakuta, S., et al. (2003). Gliding movement in Peranema trichophorum is powered by flagellar surface motility. Cell Motility and the Cytoskeleton, 55, 244–253.PubMedCrossRefGoogle Scholar
  145. Santek, B., Felski, M., Friehs, K., Lotz, M., & Flaschel, E. (2009). Production of paramylon,a beta-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Engineering in Life Sciences, 9, 23–28.CrossRefGoogle Scholar
  146. Schuster, F. L., Goldstein, S., & Hershenov, B. (1968). Ultrastructure of a flagellate, Isonema nigricans nov. gen. nov. sp., from a polluted marine habitat. Protistologica, 4, 141–149.Google Scholar
  147. Shibakami, M., Sohma, M., & Hayashi, M. (2012). Fabrication of doughnut-shaped particles from spheroidal paramylon granules of Euglena gracilis using acetylation reaction. Carbohydrate Polymers, 87, 452–456.CrossRefGoogle Scholar
  148. Shin, W., Boo, S. M., & Triemer, R. E. (2001). Ultrastructure of the basal body complex and putative vestigial feeding apparatus in Phacus pleuronectes (Euglenophyceae). Journal of Phycology, 37, 913–921.CrossRefGoogle Scholar
  149. Shin, W., Brosnan, S., & Triemer, R. E. (2002). Are cytoplasmic pockets (MTR/pocket) present in all photoautotrophic euglenoid genera? Journal of Phycology, 38, 790–799.CrossRefGoogle Scholar
  150. Shin, W., & Triemer, R. E. (2004). Phylogenetic analysis of the genus Euglena (Euglenophyceae) with the particular reference to the type species Euglena viridis. Journal of Phycology, 40, 758–771.CrossRefGoogle Scholar
  151. Silva, P. C. (1980). Remarks on algal nomenclature VI. Taxon, 29, 121–145.CrossRefGoogle Scholar
  152. Simon, M., Jardillier, L., Deschamps, P., Moreira, D., Restoux, G., Bertolino, P., & López-García, P. (2015). Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environmental Microbiology, 17, 3610–3627.PubMedCrossRefGoogle Scholar
  153. Simpson, A. G. B. (1997). The identity and composition of the Euglenozoa. Archiv für Protistenkunde, 148, 318–328.CrossRefGoogle Scholar
  154. Simpson, A. G. B., Van Den Hoff, J., Bernard, C., Burton, H. R., & Patterson, D. J. (1997). The ultrastructure and systematic position of the Euglenozoon Postgaardi mariagerensis, Fenchel et al. Archiv für Protistenkunde, 147, 213–225.CrossRefGoogle Scholar
  155. Simpson, A. G. B., Lukes, J., & Roger, A. J. (2002). The evolutionary history of kinetoplastids and their kinetoplasts. Molecular Biology and Evolution, 19, 2071–2083.PubMedCrossRefGoogle Scholar
  156. Simpson, A. G. B., & Roger, A. J. (2004). Protein phylogenies robustly resolve deep-level relationships within Euglenozoa. Molecular Phylogenetics and Evolution, 30, 201–212.PubMedCrossRefGoogle Scholar
  157. Singh, K. P. (1956). Studies in the genus TrachelomonasI. Description of six organisms in cultivation. American Journal of Botany, 43, 258–266.CrossRefGoogle Scholar
  158. Spencer, D. F., & Gray, M. W. (2010). Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: Fragmented genes in a seemingly fragmented genome. Molecular Genetics and Genomics, 285, 19–31.PubMedCrossRefGoogle Scholar
  159. Solomon, J. A., Walne, P. L., & Kivic, P. A. (1987). Entosiphon sulcatum (Euglenophyceae): Flagellar roots of the basal body complex and reservoir regions. Journal of Phycology, 23, 85–98.CrossRefGoogle Scholar
  160. Starmach, K. (1983). Euglenophyta – Eugleniny. III. In K. Starmach (Ed.), Flora Słodkowodna Polski. Państwowe Wydawn Naukowe: Warszawa/Kraków. [in Polish].Google Scholar
  161. Stein, F. V. (1878). Der Organismus der Infusionsthiere, Abt. 3: Der Organismus der Flagellaten, 1. Hälfte. Leipzig: Engelmann. [in German].Google Scholar
  162. Sturm, N. R., Maslov, D. A., Grisard, E. C., & Campbell, D. A. (2001). Diplonema spp. possess spliced leader RNA genes similar to the Kinetoplastida. Journal of Eukaryotic Microbiology, 48, 325–331.PubMedCrossRefGoogle Scholar
  163. Surek, B., & Melkonian, M. (1986). A cryptic cytostome is present in Euglena. Protoplasma, 133, 39–49.CrossRefGoogle Scholar
  164. Takeyama, H., Kanamaru, A., Yoshino, Y., Kakuta, H., Kawamura, Y., & Matsunaga, T. (1997). Production of antioxidant vitamins β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnology and Bioengineering, 532, 185–190.CrossRefGoogle Scholar
  165. Talke, S., & Preisfeld, A. (2002). Molecular evolution of euglenozoan paraxonemal rod genes par1 and par2 coincides with phylogenetic reconstruction based on small subunit rDNA data. Journal of Phycology, 38, 995–1003.CrossRefGoogle Scholar
  166. Teerawanichpan, P., & Qiu, X. (2010). Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids, 45, 263–273.PubMedCrossRefGoogle Scholar
  167. Tell, G., & Conforti, V. (1986). Euglenophyta pigmentadas de la Argentina. Berlin/Stuttgart: Gebrüder Borntraeger Verlegsbuchhandlung. [in Spanish].Google Scholar
  168. Triemer, R. E. (1985). Ultrastructural features of mitosis in Anisonema sp. (Euglenida). Journal of Eukaryotic Microbiology, 32, 683–690.Google Scholar
  169. Triemer, R. E. (1997). Feeding in Peranema trichophorum revisited (Euglenophyta). Journal of Phycology, 33, 649–654.CrossRefGoogle Scholar
  170. Triemer, R. E., & Farmer, M. A. (1991a). An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma, 164, 91–104.CrossRefGoogle Scholar
  171. Triemer, R. E., & Farmer, M. A. (1991b). The ultrastructural organization of the heterotrophic euglenids and its evolutionary implications. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 185–204). Oxford: Clarendon Press.Google Scholar
  172. Triemer, R. E., & Fritz, L. (1987). Structure and operation of the feeding apparatus in a colorless eugelnoid, Entosiphon sulcatum. Journal of Protozoology, 34, 39–47.CrossRefGoogle Scholar
  173. Triemer, R. E., Linton, E., Shin, W., Nudelman, A., Monfils, A., Bennett, M., et al. (2006). Phylogeny of the euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov (Euglenophyta). Journal of Phycology, 42, 731–740.CrossRefGoogle Scholar
  174. Triemer, R. E., & Farmer, M. A. (2007). A decade of euglenoid molecular phylogenetics. In J. Brodie & J. Lewis (Eds.), Unravelling the algae: The past, present and future of algal systematics (pp. 315–330). London: Taylor & Francis.CrossRefGoogle Scholar
  175. Tucci, S., Vacula, R., Krajcovic, J., Proksch, P., & Martin, W. (2010). Variability of wax-ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. Journal of Eukaryotic Microbiology, 57, 63–69.PubMedCrossRefGoogle Scholar
  176. Turmel, M., Gagnon, M. C., O’Kelly, C. J., Otis, C., & Lemieux, C. (2009). The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution, 26, 631–648.PubMedCrossRefGoogle Scholar
  177. von der Heyden, S., Chao, E. E., Vickerman, K., & Cavalier-Smith, T. (2004). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. Journal of Eukaryotic Microbiology, 51, 402–416.PubMedCrossRefGoogle Scholar
  178. Walder, J. A., Eder, P. S., Engman, D. M., Brentano, S. T., Walder, R. Y., Knutzon, D. S., et al. (1986). The 35-nucleotide spliced leader sequence is common to all trypanosome messenger RNA’s. Science, 233, 569–571.PubMedCrossRefGoogle Scholar
  179. Wallis, J. G., & Browse, J. (1999). The Delta8-desaturase of Euglena gracilis: An alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Archives of Biochemistry and Biophysics, 365, 307–316.PubMedCrossRefGoogle Scholar
  180. Wenrich, D. (1924). Studies on Euglenomorpha hegneri n. g., n. sp., a Euglenoid Flagellate Found in Tadpoles. The Biological Bulletin, 47, 149–174.CrossRefGoogle Scholar
  181. Wiegert, K. E., Bennett, M. S., & Triemer, R. E. (2012). Evolution of the chloroplast genome in photosynthetic euglenoids: A comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist, 163, 832–843.PubMedCrossRefGoogle Scholar
  182. Wiegert, K. E., Bennett, M. S., & Triemer, R. E. (2013). Tracing patterns of chloroplast evolution in Euglenoids: Contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). Journal of Eukaryotic Microbiology, 60, 214–221.PubMedCrossRefGoogle Scholar
  183. Willey, R. L., & Wibel, R. G. (1985). A cytostome/cytopharynx in green euglenoid flagellates (Euglenales) and its phylogenetic implications. Biosystems, 18, 369–376.PubMedCrossRefGoogle Scholar
  184. Willey, R. L., & Wibel, R. G. (1987). Flagellar roots and the reservoir cytoskeleton of Colacium libellae (Euglenophyceae). Journal of Phycology, 23, 283–288.CrossRefGoogle Scholar
  185. Yamaguchi, A., Yubuki, N., & Leander, B. S. (2012). Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: Description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evolutionary Biology, 12(1), 29.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yubuki, N., Edgcomb, V. P., Bernhard, J. M., & Leander, B. S. (2009). Ultrastructure and molecular phylogeny of Calkinsia aureus: Cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiology, 9, 16.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yubuki, N., & Leander, B. S. (2012). Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. Protoplasma, 249, 859–869.PubMedCrossRefGoogle Scholar
  188. Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant Journal, 75, 230–244.PubMedCrossRefGoogle Scholar
  189. Zakryś, B. (1986). The nuclear behaviour during abnormal cell division in Euglena viridis Ehrbg. Nova Hedwigia, 42, 591–596.Google Scholar
  190. Zakryś, B. (1997). The taxonomic consequences of morphological and genetic variability in Euglena agilis Carter (Euglenophyta): Species or clones in Euglena? Acta Protozoologica, 36, 157–169.Google Scholar
  191. Zakryś, B., Milanowski, R., Empel, J., Borsuk, P., Gromadka, R., & Kwiatowski, J. (2002). Two different species of Euglena, E. geniculata and E. myxocylindracea (Euglenophyceae), are virtually genetically and morphologically identical. Journal of Phycology, 38, 1190–1199.CrossRefGoogle Scholar
  192. Zakryś, B., Milanowski, R., Kędzior, M., Empel, J., Borsuk, P., Gromadka, R., & Kwiatowski, J. (2004). Genetic variability of Euglena agilis (Euglenaceae). Acta Societatis Botanicorum Poloniae, 73, 305–309.CrossRefGoogle Scholar
  193. Zakryś, B., Karnkowska-Ishikawa, A., Łukomska-Kowalczyk, M., & Milanowski, R. (2013). A new photosynthetic euglenoid isolated in Poland: Euglenaria clepsydroides sp. nov. (Euglenea). European Journal of Phycology, 48, 260–267.CrossRefGoogle Scholar
  194. Zimba, P. V., Rowan, M., & Triemer, R. E. (2004). Identification of euglenoid algae that produce ichthyotoxin(s). Journal of Fish Diseases, 27, 115–117.PubMedCrossRefGoogle Scholar
  195. Zimba, P. V., Moeller, P. D., Beauchesne, K., Lane, H. E., & Triemer, R. E. (2010). Identification of euglenophycin – A toxin found in certain euglenoids. Toxicon, 55, 100–104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Brian S. Leander
    • 1
  • Gordon Lax
    • 2
  • Anna Karnkowska
    • 1
  • Alastair G. B. Simpson
    • 2
  1. 1.The Departments of Botany and ZoologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations