Advertisement

Diseases of Cyclamen

Living reference work entry
  • 644 Downloads
Part of the Handbook of Plant Disease Management book series (HPDM)

Abstract

Cyclamen (Cyclamen persicum Mill.) is a major potted flower in the horticultural trade. As a result of more intensive production over the past 20 years, many new disease problems have emerged as breeders have exchanged germplasm and seed. Fusarium wilt and tospovirus diseases have become particularly challenging to manage. The following chapter offers an array of management strategies for more than 15 disease conditions based on current research.

Keywords

Botrytis cinerea Fusarium wilt Root rots Leaf spots Tospovirus Integrated disease management 

References

  1. Alma A, Marzachì C, d’Aquilio M, Bosco D (2000) Cyclamen (Cyclamen persicum L.): a dead end host species for 16Sr-IB and -IC subgroup phytoplasmas. Ann Appl Biol 136:173–178CrossRefGoogle Scholar
  2. Amani A (1967) Soft rot of ornamentals and vegetables. Iranian J Plant Pathol 4:1–10Google Scholar
  3. Aragaki M, Uchida JY (2001) Morphological distinctions between Phytophthora capsici and P.tropicalis sp. nov. Mycologia 93:137–145CrossRefGoogle Scholar
  4. Araújo AE, Maffia LA, Mizubuti ES, Alfenas AC, Capdeville GD, Grossi JA (2005) Survival of Botrytis cinerea as mycelium in rose crop debris and as sclerotia in soil. Fitopatol Bras 30:516–521Google Scholar
  5. Bacigálová K, Turis P, Park MJ, Shin HD (2010) First report of Septoria infection on Cyclamen fatrense. Thaiszia J Bot 20:109–114Google Scholar
  6. Baker KF, Dimock AW, Davis LH (1950) Ramularia cyclaminicola Trel., the cause of cyclamen stunt disease. Phytopathology 40:1027–1034Google Scholar
  7. Barthelet J, Gaudineau M (1936) Les maladies des Cyclamens. Rev Pathol Veg Entomol Agric Fr 23:101–122Google Scholar
  8. Beamont A (1953) Cyclamen diseases. Gard Chronicle 133:240Google Scholar
  9. Bellardi MG, Vicchi V (1998) Impatiens necrotic spot tospovirus in cyclamen in Veneto (Northern-East Italy) [Cyclamen persicum Mill.]. Colture Protette, ItalyGoogle Scholar
  10. Bertaccini A (1990) Cyclamen: a new host of mycoplasma-like organisms. Phytopathol Mediterr 29:213–214Google Scholar
  11. Bongini V (1930) Le macchie fogliari del Ciclamino (Phyllosticta cyclaminis Brun.). Difesa delle Piante 7:4–9Google Scholar
  12. Bongini V (1940) Note fitopatologiche. Boll Lab Sper R Osserv Fitopatalog Torino 18:1–34Google Scholar
  13. Bonifacio A (1960) A cyclamen wilt. Rivista della Ortoflorofrutticoltura Italiana 44:165–171Google Scholar
  14. Brielmaier-Liebetanz U, Bohmer B (1988) Cryptocline cyclaminis – investigations on the susceptibility of Cyclamen cultivars and on the range of host plants. Gesunde Pflanzen 40:253–256 (Germany, FR)Google Scholar
  15. Butcher RW (1934) Cyclamen wilt disease. Tenth annual report Cheshunt experimental research station, Hertfordshire 1924, pp 69–72Google Scholar
  16. Carta C (1993) Erwinia rhapontici (Millard) Burkholder: a new report from cyclamen (Cyclamen persicum Mill.). Phytopathol Mediterr 32:257–260Google Scholar
  17. Chandrashekar M, Diriwaechter G (1984) Soft rot of cyclamen in Australia caused by Erwinia carotovora ssp. carotovora. Australas Pl Path 12:60–62CrossRefGoogle Scholar
  18. Chase A (2009) Effect of fungicides on anthracnose on cyclamen caused by Colletotrichum. Chase Horticultural Research Inc. http://www.chasehorticulturalresearch.com/pdfs/chasebase/229.pdf
  19. Daughtrey M, Tobiasz M (2005) Suppression of Fusarium wilt of cyclamen with bioantagonists and fungicides. Phytopathology 95:S128CrossRefGoogle Scholar
  20. Daughtrey ML, Wick RL, Peterson JL (1995) Compendium of flowering potted plant diseases. American Phytopathological Society, St. PaulGoogle Scholar
  21. Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR (1997) Tospoviruses strike the greenhouse industry. Plant Dis 81:1221CrossRefGoogle Scholar
  22. Davis LH (1950) Ramularia cvclaminicola Trel. the cause of cyclamen stunt disease. Phytopathology 40:027–1034Google Scholar
  23. de O Resende R, Pozzer L, Nagata T, Bezerra IC, Lima MI, de Brito Giordano L, Kitajima EW, de Ávila AC (1996) New tospoviruses found in Brazil. Acta Hortic 431:78–89. doi:10.17660/ActaHortic.1996.431.7CrossRefGoogle Scholar
  24. Donahoo RS, Lamour KH (2008) Interspecific hybridization and apomixis between Phytophthora capsici and Phytophthora tropicalis. Mycologia 100:911–920CrossRefPubMedGoogle Scholar
  25. Elliott DR, Lebas BSM, Ochoa-Corona FM, Tang J, Alexander BJR (2009) Investigation of Impatiens necrotic spot virus outbreaks in New Zealand. Australas Pl Pathol 38:490–495CrossRefGoogle Scholar
  26. Elmer WH (2001) The influence of nonpathogenic Fusarium species and Pseudomonas fluorescens on Fusarium wilt of cyclamen, 2000. Biol Cult Tests Control Plant Dis 16:O40Google Scholar
  27. Elmer WH (2002a) Efficacy of microbial inoculants as preventative fungicides for suppression of Fusarium wilt of cyclamen. Biol Cult Tests Control Plant Dis 17:O07Google Scholar
  28. Elmer WH (2002b) Influence of Fusarium oxysporum f. sp. cyclaminis and sodium chloride on growth of cyclamen and Fusarium wilt. Plant Dis 86:389–393CrossRefGoogle Scholar
  29. Elmer WH (2006) Efficacy of acibenzolar-S-methyl in the management of Fusarium wilt of cyclamen. Crop Prot 25:671–676CrossRefGoogle Scholar
  30. Elmer WH, Daughtrey ML (2012) Fusarium wilt of cyclamen. In: Garibaldi A, Katan J, Gullino ML (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St. Paul, pp 213–219Google Scholar
  31. Elmer WH, McGovern RJ (2004) Efficacy of integrating biologicals with fungicides for the suppression of Fusarium wilt of cyclamen. Crop Prot 23:909–914CrossRefGoogle Scholar
  32. Elmer WH, Gent MPN, McAvoy R (2011) Influence of partial saturation in ebb and flow irrigation on flooded floors to suppress Pythium root rot of ornamentals. Crop Prot 33:29–33CrossRefGoogle Scholar
  33. Ewald A, Orlicz-Luthardt A, Winkelmann T, Schwenkel H-G (2000) Interspecific hybrids of Cyclamen persicum Mill. × Cyclamen purpurascens Mill.: propagation, somaclonal variation, resistance to Fusarium wilt and suitability as an outdoor crop. Acta Hortic 508:309–310CrossRefGoogle Scholar
  34. Gallitelli D (2000) The ecology of Cucumber mosaic virus and sustainable agriculture. Virus Res 71:9–21CrossRefPubMedGoogle Scholar
  35. Garibaldi A (1988) Research on substrates suppressive to Fusarium oxysporum and Rhizoctonia solani. Acta Hortic 221:271–277CrossRefGoogle Scholar
  36. Gerlach W (1954) Untersuchungen über die Welkekrankheit des Alpenveilchens. (Erreger: Fusarium oxysporum Schlecht. f. sp. cyclaminis n. f.). Phytopath 22:125–176Google Scholar
  37. Gerlach WPP, Schubert R (2001) A new wilt of cyclamen caused by Phytophthora tropicalis in Germany and the Netherlands. Plant Dis 85:334–334CrossRefGoogle Scholar
  38. Gillespie DR, Menzies JG (1993) Fungus gnats vector Fusarium oxysporum f. sp. radicis-lycopersici. Ann Appl Biol 123:539–544CrossRefGoogle Scholar
  39. Gladstone LA, Moorman GW (1989) Pythium root rot of seedling geraniums associated with various concentrations of nitrogen, phosphorus, and sodium chloride. Plant Dis 73:733–736CrossRefGoogle Scholar
  40. Gladstone LA, Moorman GW (1990) Pythium root rot of seedling geraniums associated with high levels of nutrients. HortScience 25:982Google Scholar
  41. Goto T, Sazarash H, Nozawa H, Nakayama K, Natsuaki T (2001) Necrotic spot of cyclamen and exacum caused by impatiens necrotic spot virus (INSV)(Abstract in Japanese). Jpn J Phytopathol 67:173Google Scholar
  42. Gullino ML, Minuto A, Gilardi G, Garibaldi A (2002) Efficacy of azoxystrobin and other strobilurins against Fusarium wilts of carnation, cyclamen and Paris daisy. Crop Prot 21:57–61CrossRefGoogle Scholar
  43. Harrison UJ, Shew HD (2001) Effects of soil pH and nitrogen fertility on the population dynamics of Thielaviopsis basicola. Plant Soil 228:147–155CrossRefGoogle Scholar
  44. Hong CX, Richardson PA, Kong P, Jeffers SN, Oak SW (2006) Phytophthora tropicalis isolated from diseased leaves of Pieris japonica and Rhododendron catawbiense and found in irrigation water and soil in Virginia. Plant Dis 90:525CrossRefGoogle Scholar
  45. Iyozumi H, Hirayae K, Komagata T, Tsuchiya K, Hibi T, Akutsu K (1996) Biocontrol of cyclamen gray mould (Botrytis cinerea) by Serratia marcescens B2. Ann Phytopathol Soc Jpn 62:559–565CrossRefGoogle Scholar
  46. Kamińska M (1975) Susceptibility of cyclamen to certain viruses. Prace Instytutu Sadownictwa w Skierniewicach B 1:67–172Google Scholar
  47. Kessel GJT, de Haas BH, Lombaers-van der Plas CH, Meijer EMJ, Dewey FM, Goudriaan J, van der Werf W, Köhl J (1999) Quantification of mycelium of Botrytis spp. and the antagonist Ulocladium atrum in necrotic leaf tissue of cyclamen and lily by fluorescence microscopy and image analysis. Phytopath 89:868–876CrossRefGoogle Scholar
  48. Khristova E (1958) New diseases of decorative plants in Bulgaria and their control. Ovorshtarst Gradinarst 1:38–41Google Scholar
  49. Köhl J, Gerlagh M, Grit G (2000) Biocontrol of Botrytis cinerea by Ulocladium atrum in different production systems of cyclamen. Plant Dis 84:569–573CrossRefGoogle Scholar
  50. Korbin M, Kaminńska M (1998) Characterization of Cucumber mosaic cucumovirus isolates. Phytopathol Pol 16:71–78Google Scholar
  51. Krebs E-K (1985) Erst bei hoher Sporendichte birgt Fusarium Gefahr. Gaertnerboerse und Gartenwelt 48:1791–1793Google Scholar
  52. Krebs E-K (1986) Brennflecken Kranheit ist Cyptocline cyclaminis. Gaertnerboerse und Gartenwelt 86:1868–1869Google Scholar
  53. Krebs E-K (1987) Brennflecken-Kranheit ist sicher bekampfbar. Gaertnerboerse und Gartenwelt 87:1731–1733Google Scholar
  54. Kuter GA, Hoitink HAJ, Chen W (1988) Effect of municipal sludge compost curing time on suppression of Pythium and Rhizoctonia diseases of ornamental plants. Plant Dis 72:751–756CrossRefGoogle Scholar
  55. Lemattre M (1973) Problème bactérien en culture de cyclamen. In: ‘Le cyclamen’. Journée d’étude organisée sous l’égide du Cercle National des Jeunes Horticulteurs par le Service Technique de la Fédération Nationale des Producteurs de l’Horticulture et des Pépinières (F.N.P.H.P.). Paris, 22 Feb 1973, pp 63–70Google Scholar
  56. Leroux P (2007) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Willimans B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Amsterdam, pp 195–222CrossRefGoogle Scholar
  57. Liu B, Munster M, Johnson C, Louws FJ (2011) First report of anthracnose caused by Colletotrichum fragariae on cyclamen in North Carolina. Plant Dis 95:1480CrossRefGoogle Scholar
  58. MacKenzie SJ, Mertely JC, Seijo TE, Peres NA (2008) Colletotrichum fragariae is a pathogen on hosts other than strawberry. Plant Dis 92:1432–1438CrossRefGoogle Scholar
  59. Marque JM, Kobori RF, Kato SM (2006) Ocorrência de Colletotrichum gloeosporioides em ciclamem cultivado em vaso sob estufa no Estado de São Paulo. Fitopatol Bras 31:3CrossRefGoogle Scholar
  60. Massey LM, Tilford PE (1932) Cyclamen stunt. Phytopathology 22:19Google Scholar
  61. Maya MA, Matsubara Y-I (2013) Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. Crop Prot 47:41–48CrossRefGoogle Scholar
  62. Maya MA, Ito M, Matsubara Y (2014) Tolerance to heat stress and anthracnose in mycorrhizal cyclamen. Acta Hortic 1025:143–148CrossRefGoogle Scholar
  63. Migheli Q, Garibaldi A (1995) Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot 14:221–226CrossRefGoogle Scholar
  64. Minuto A, Migheli Q, Garibaldi A (1995) Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control Fusarium wilt of cyclamen. Crop Prot 14:221–226CrossRefGoogle Scholar
  65. Minuto G, Minuto A, Tinivella F, Gullino ML, Garibaldi A (2004) Disease control on organically grown cyclamen. Manage Plant Dis Arthropod Pests BCAs IOB/wprs Bul 27:89–93Google Scholar
  66. Minuto A, Ciuffo M, Dani E, Turina M, Minuto G (2011) Uncommon symptoms caused by infection of Cucumber mosaic virus on potted cyclamen. Colture Protette 40:68–71Google Scholar
  67. Mirkova E (1995) Sensitivity of Phytophthora and Pythium to metalaxyl. Rasteniev”dni Nauki 32:120–121Google Scholar
  68. Moore WC (1947) Report of fungus, bacterial, and other diseases of crops in England and Wales for the years 1943–1946. G B Minist Agric Fish Food Bull 139:78–79Google Scholar
  69. Moorman GW, Lease RJ (1992) Benzimidazole- and dicarboximide-resistant Botrytis cinerea from Pennsylvania greenhouses. Plant Dis 76:477–480CrossRefGoogle Scholar
  70. Moorman GW, Kang S, Geiser DM, Kim SH (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231CrossRefGoogle Scholar
  71. Olsen H, Benson CM (2010) First report of crown rot caused by Phytophthora tropicalis on gloxinia in North Carolina. Pl Health Prog. doi:10.1094/PHP-2010-0708-03-BRGoogle Scholar
  72. Orlicz-Luthardt A (1998) Studies on the resistance of cyclamen to Fusarium wilt. Beitr Züchtungsforsch 4:48–49Google Scholar
  73. Oudemans P, Coffey MD (1991) A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycol Res 95:1025–1046CrossRefGoogle Scholar
  74. Panagopoulos CG, Psallida PG (1970) A bacterial soft rot of cyclamen. Annales de l’Institut Phytopathologique Benaki 9:83–89Google Scholar
  75. Pitta GPB, Teranishi J (1979) Ocorrencia da murcha (Fusarium oxysporum Schl. f. cyclaminis n.f.) do ciclamen (Cyclamen persicum Mill.). Biologica 45:213–215Google Scholar
  76. Raabe RD, Hurlimann JH (1981) Control of Pythium root rot of cyclamen. Calif Pl Path 53:3–4Google Scholar
  77. Rattink H (1986) Some aspects of the etiology and epidemiology of Fusarium wilt on cyclamen. Meded Fac Landbouww Univ Gent 51(2b)Google Scholar
  78. Rattink H (1990) Epidemiology of Fusarium wilt in cyclamen in an ebb and flow system. Neth J Plant Pathol 96:171–177CrossRefGoogle Scholar
  79. Reimherr P (1985) Atlas of diseases and pests of cyclamen. Gb + Gw 85(48):1780–1790Google Scholar
  80. Romero AM, Rivera MC (2005) Cyclamen soft rot caused by Erwinia chrysanthemi in Argentina. Australas Pl Pathol 34:279–280CrossRefGoogle Scholar
  81. Rouxel F, Grouet D (1974) Présence en France de la fusariose vasculaire du Cyclamen. Ann Phytopathol 6:475–478Google Scholar
  82. Seglie L, Spadaro D, Devecchi M, Larcher F, Gullino ML (2009) Use of 1-methylcyclopropene for the control of Botrytis cinerea on cut flowers. Phytopathol Mediterr 48:253–261Google Scholar
  83. Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340CrossRefGoogle Scholar
  84. Spengler G (1979) A new fungicide for the control of root and stem rots. Experiments on the control of soil-borne oomycetes in the cultivation of ornamental plants with Fongarid 50 WP. Deutscher Gartenbau 33:989–990Google Scholar
  85. Tompkins CM, Snyder WC (1972) Cyclamen wilt in California and its control. Plant Dis Rep 56:493–497Google Scholar
  86. Trelease W (1916) Two leaf-fungi of cyclamen. Trans Ill State Acad Sci 9:143–146Google Scholar
  87. Vozelj N, Petrovič N, Novak MP, Tušek M, Mavrič I, Ravnikar M (2003) The most frequent viruses on selected ornamental plants and vegetables in Slovenia. In: Proceeding 6th Slovenian conference on plant protection, Zreče, 4–6 March 2003Google Scholar
  88. Weintraub PG, Zeidan M, Spiegel S, Gera A (2007) Diversity of the known phytoplasmas in Israel. Bull Insectol 60(2):143–144Google Scholar
  89. Wollenweber HW, Reinking OA (1935) Die fusarien: ihre beschreibung, schadwirkung und bekämpfung. P. Parey, BerlinGoogle Scholar
  90. Woudt LP, Neuvel A, Sikkema A, van Grinsven MQJM, de Milliano WAJ, Campbell CL, Leslie JF (1995) Genetic variation in Fusarium oxysporum from cyclamen. Phytopathol 85:1348–1355CrossRefGoogle Scholar
  91. Wright ER, Rivera MC, Mascarini A, Nuñez LS, Gentile CM (2006) Florist’s cyclamen anthracnose caused by Colletotrichum gloeosporioides in Argentina. Australas Pl Dis Notes 1:1–2CrossRefGoogle Scholar
  92. Yunis H, Elad Y (1989) Survival of dicarboximide-resistant strains of Botrytis cinerea in plant debris during summer in Israel. Phytoparasitica 17:13–21CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenUSA
  2. 2.Long Island Horticultural Research and Extension CenterCornell UniversityRiverheadUSA

Personalised recommendations