Advertisement

Atomic-Scale Structure of Gel Materials by Solid-State NMR

  • Mark E. SmithEmail author
  • Diane Holland
Reference work entry

Abstract

The underlying principles of solid-state NMR spectroscopy are outlined with an emphasis on the physical origins of the interactions that affect NMR spectra so that an understanding of the structural information they convey is clearly understood. The fundamental components of the experimental approach are described. How the experimental data can be analyzed to provide structural characterization of sol-gel materials is illustrated through a series of examples from the literature. The short-range structural sensitivity of NMR means that it is an ideal probe of sol-gel materials since they are structurally disordered. Given the importance of silicates in sol-gel science, 29Si magic-angle spinning (MAS) NMR is a widely used nucleus in solid-state NMR studies of sol-gel materials. However, it is emphasized that to derive maximum benefit from NMR characterization, a multinuclear approach is used, although each nucleus will have its own particular considerations which are presented. In this second edition, key advances in the experimental methodology (e.g., much higher applied magnetic fields, faster MAS rates, more sophisticated excitation approaches) since 2005 are outlined. The use of first-principles computational approaches to calculate NMR interaction parameters and hence better constrain structure provides an important additional dimension to the NMR approach. Materials where there has been a substantial expansion of sol-gel approaches since 2005 are included, with, for example, novel sol-gel schemes opening up preparation of phosphates where 31P MAS NMR is a sensitive structural probe. Another area where there has been substantial sol-gel activity since 2005 is in the preparation of bioactive calcium silicate-based materials, where multinuclear NMR is an ideal probe, including the use of 43Ca, a quadrupolar nucleus with a small magnetic moment, which has only really become readily accessible in recent years.

Notes

Acknowledgment

M.E.S. thanks EPSRC for funding sol-gel work at Warwick and for partially funding the solid-state NMR equipment, as well as Lancaster University for their encouragement in research. D.H. thanks the University of Warwick for continued support. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC, as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF).

References

  1. Abidi N, Deroide B, Zanchetta JV, de Menorval LC, d’Espinose JB. J Non-Cryst Solids. 1998;231:49.CrossRefGoogle Scholar
  2. Ali F, Smith ME, Steuernagel S, Whitfield HJ. J Mater Chem. 1996;6:261.CrossRefGoogle Scholar
  3. Alonso B, Maquet J, Sanchez C. J Non-Cryst Solids. 2000;277:58.CrossRefGoogle Scholar
  4. Alonso B, Fayon F, Fredoueil F, Bujoli B, Massiot D. J Sol–Gel Technol. 2003;26:95.CrossRefGoogle Scholar
  5. Anderson JA, Fergusson CA. J Mater Sci. 1999;18:1075.Google Scholar
  6. Anderson JA, Fergusson C, Rodriguez-Ramos I, Guerrero-Ruiz A. J Catal. 2000;192:344.CrossRefGoogle Scholar
  7. Andrianainarivelo M, Corriu R, LeClerq D, Mutin PH, Vioux A. J Mater Chem. 1996;6:1665.CrossRefGoogle Scholar
  8. Ashbrook SE, Smith ME. Oxygen-17 NMR of Inorganic Materials In: Wasylishen RE, Ashbrook SE, Wimperis S, editors. NMR of quadrupolar nuclei in solid materials. Chichester: Wiley; 2012. p. 291.Google Scholar
  9. Azis RS, Holland D, Smith ME, Howes A, Hashim M, Zakaria M, Hassan J, Saiden NM, Ikhwan MK. J Aust Ceram Soc. 2013;49:74.Google Scholar
  10. Babonneau F, Maquet J. Polyhedron. 2000;19:315.CrossRefGoogle Scholar
  11. Babonneau F, Bois L, Yang CY, Interrante LV. Chem Mater. 1994;6:51.CrossRefGoogle Scholar
  12. Bak M, Rasmussen T, Nielsen N. J Magn Reson. 2000;147:296.CrossRefGoogle Scholar
  13. Bastow TJ, Whitfield HJ. Chem Mater. 1999;11:3518.CrossRefGoogle Scholar
  14. Bastow TJ, Smith ME, Whitfield HJ. J Mater Chem. 1992;2:989.CrossRefGoogle Scholar
  15. Bastow TJ, Moodie AF, Smith ME, Whitfield HJ. J Mater Chem. 1993;3:697.CrossRefGoogle Scholar
  16. Bastow TJ, Murgaski L, Smith ME, Whitfield HJ. Mater Lett. 1995;23:117.CrossRefGoogle Scholar
  17. Bastow TJ, Smith ME, Whitfield HJ. J Mater Chem. 1996;6:1951.CrossRefGoogle Scholar
  18. Betrabet CS, Wilkes GL. J Inorg Organometal Polym. 1994;4:343.CrossRefGoogle Scholar
  19. Bjökert US, Holland D, Lewis MH. J Sol–Gel Sci Technol. 1998;13:799.CrossRefGoogle Scholar
  20. Bjökert US, Mayappan R, Holland D, Lewis MH. J Eur Ceram Soc. 1999;19:1847.CrossRefGoogle Scholar
  21. Blanchard J, Ribot F, Sanchez C, Bellot P-V, Trokiner A. J Non-Cryst Solids. 2000;265:83.CrossRefGoogle Scholar
  22. Bodart PR, Parmentier J, Harris RK, Thompson DP. J Phys Chem Solids. 1999;60:223.CrossRefGoogle Scholar
  23. Bois L, Maquet J, Babonneau F, Bahloul D. Chem Mater. 1995;7:975.CrossRefGoogle Scholar
  24. Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. Chem Rev. 2012;112:5733.CrossRefGoogle Scholar
  25. Bonhomme-Coury L, Babonneau F, Livage J. Chem Mater. 1993;5:323.CrossRefGoogle Scholar
  26. Brieger J, Merkle R, Bertagnolli H, Muller K. Ber Buns Gess Phys Chem Chem Phys. 1998;102:1376.CrossRefGoogle Scholar
  27. Brinker CJ, Scherer GW. Sol–gel science. San Diego: Academic; 1990.Google Scholar
  28. Brus J, Skrdlantova M. J Non-Cryst Solids. 2001;281:61.CrossRefGoogle Scholar
  29. Camus L, Goletto V, Maquet J, Gervais C, Bonhomme C, Babonneau F, Massiot DJ. Sol–Gel Sci Technol. 2003;26:311.CrossRefGoogle Scholar
  30. Cannas C, Casu M, Lai A, Musinu A, Piccaluga G. J Mater Chem. 1999;9:1765.CrossRefGoogle Scholar
  31. Cardiano P, Sergi S, Lazzari M, Pirano P. Polymer. 2002;43:6635.CrossRefGoogle Scholar
  32. Carta D, Knowles JC, Smith ME, Newport RJ. J Non-Cryst Solids. 2007;353:1141.CrossRefGoogle Scholar
  33. Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ. J Mater Chem. 2009;19:150.CrossRefGoogle Scholar
  34. Chadwick AV, Poplett IJF, Maitland DTS, Smith ME. Chem Mater. 1998;10:864.CrossRefGoogle Scholar
  35. Chadwick AV, Mountjoy G, Nield VM, Poplett IJF, Smith ME, Strange JH, Tucker MG. Chem Mater. 2001;13:1219.CrossRefGoogle Scholar
  36. Charpentier T. Solid State Nucl Magn Reson. 2011;40:1.CrossRefGoogle Scholar
  37. Clayden NJ, Pernice P, Aronne A. J Non-Cryst Solids. 2005;351:195.CrossRefGoogle Scholar
  38. Clayden NJ, Accardo G, Mazzei P, Piccolo A, Pernice P, Vergara A, Ferone C, Aronne A. J Mater Chem A. 2015;3:15986.CrossRefGoogle Scholar
  39. Coster D, Fripiat JJ. Chem Mater. 1993;5:1204.CrossRefGoogle Scholar
  40. Crouzet L, Leclerq D, Mutin PH, Vioux A. Chem Mater. 2003;15:1530.CrossRefGoogle Scholar
  41. Damrau U, Marsmann HC, Sporman O, Wang P. J Non-Cryst Solids. 1992;145:164.CrossRefGoogle Scholar
  42. Davis SR, Brough AR, Atkinson A. J Non-Cryst Solids. 2003;315:197.CrossRefGoogle Scholar
  43. de Araujo CC, Zhang L, Eckert H. Mater Chem. 2006;16:1323.Google Scholar
  44. de Monredon S, Cellot A, Ribot F, Sanchez C, Armelao L, Gueneau L, Delattre L. J Mater Chem. 2002;12:2396.CrossRefGoogle Scholar
  45. Delattre L, Babonneau F. Chem Mater. 1997;9:2385.CrossRefGoogle Scholar
  46. Dirken PJ, Smith ME, Whitfield HJ. J Phys Chem. 1995;99:395.CrossRefGoogle Scholar
  47. Eichele K, Wasylishen RE. WSolids NMR simulation package. 2001. URL http://ramsey.chem.ualberta.ca/software/software.html
  48. Fernández-Lorenzo C, Esquivias L, Barboux P, Maquet J, Taulelle F. J Non-Cryst Solids. 1994;176:189.CrossRefGoogle Scholar
  49. Fontenot CJ, Wiench JW, Pruski M, Schrader GL. J Phys Chem B. 2001;105:10496.CrossRefGoogle Scholar
  50. Fontenot CJ, Wiench JW, Schrader GL, Pruski M. J Am Chem Soc. 2002;124:8435.CrossRefGoogle Scholar
  51. Foroutan F, Walters NJ, Owens GJ, Mordan NJ, Kim H-W, de Leeuw NH, Knowles JC. Biomed Mater. 2015;10:045025.CrossRefGoogle Scholar
  52. Fyfe CA, Aroca PP. Chem Mater. 1995;7:1800.CrossRefGoogle Scholar
  53. Gervais C, Babonneau F. J Organomet Chem. 2002;657:75.CrossRefGoogle Scholar
  54. Gervais C, Maquet J, Babonneau F, Duriez C, Framery E, Vaultier M, Florian P, Massiot D. Chem Mater. 2001a;13:1700.CrossRefGoogle Scholar
  55. Gervais C, Babonneau F, Dallabona N, Soararu GD. J Am Ceram Soc. 2001b;84:2160.CrossRefGoogle Scholar
  56. Gervais C, Babonneau F, Smith ME. J Phys Chem B. 2001c;105:1971.CrossRefGoogle Scholar
  57. Gervais C, Smith ME, Pottier A, Jolivet J-P, Babonneau F. Chem Mater. 2001d;13:462.CrossRefGoogle Scholar
  58. Guermeur C, Lambard J, Gerard J-F, Sanchez C. J Mater Chem. 1999;9:769.CrossRefGoogle Scholar
  59. Gunawidjaja PN, Holland MA, Mountjoy G, Pickup DM, Newport RJ, Smith ME. Solid State Nucl Magn Reson. 2003;23:88.CrossRefGoogle Scholar
  60. Hanna JV, Smith ME. Solid State Nucl Magn Reson. 2010;38:1.CrossRefGoogle Scholar
  61. Hartman JS, Millard RL. Phys Chem Minerals 1990;17:1.CrossRefGoogle Scholar
  62. Hoebbel D, Nacken M, Schmidt H. J Sol–Gel Sci Technol. 1998;12:169.CrossRefGoogle Scholar
  63. Harris RK. Nuclear Magnetic Resonance Spectroscopy: A Physiocochemical View Longman, London, 1984.Google Scholar
  64. Hogarth WHJ, Muir SS, Whittaker AK, da Costa JCD, Drennan J, Lu GQ. Solid State Ion. 2007;177:3389.CrossRefGoogle Scholar
  65. Iuga D, Simon S, de Boer E, Kentgens APM. J Phys Chem B. 1999;103:7591.CrossRefGoogle Scholar
  66. Iwamoto R, Fernandez C, Amoureux JP, Grimblot J. J Phys Chem B. 1998;102:4342.CrossRefGoogle Scholar
  67. Jaymes I, Douy A, Florian P, Massiot D, Coutures JP. J Sol–Gel Sci Technol. 1994;2:367.CrossRefGoogle Scholar
  68. Jaymes I, Douy A, Massiot D, Coutures JP. J Mater Sci. 1996;31:4581.CrossRefGoogle Scholar
  69. Jin JS, Sakida S, Yoko T, Nogami M. J Non-Cryst Solids. 2000;262:183.CrossRefGoogle Scholar
  70. Kalfat R, Babonneau F, Gharbi N, Zarrouk H. J Mater Chem. 1996;6:1673.CrossRefGoogle Scholar
  71. Kemp TF, Smith ME. Solid State Nucl Magn Reson. 2009;35:243.CrossRefGoogle Scholar
  72. Kerns L, Weinberg MC, Myers S, Assink R. J Non-Cryst Solids. 1998;234:86.CrossRefGoogle Scholar
  73. Khaskin IG. Dokl Akad Nauk SSSR. 1952;85:129.Google Scholar
  74. Kim JY, Sriram MA, McMichael PH, Kumta PN, Phillips BL, Risbud SH. J Phys Chem B. 1997;101:4689.CrossRefGoogle Scholar
  75. Kunwar AC, Turner GL, Oldfield E. J Magn Reson. 1986;69:124.Google Scholar
  76. Kuo PL, Chen WF, Liang WJ. J Polym Sci A. 2005;43:3359.CrossRefGoogle Scholar
  77. Laine RM, Babonneau F. Chem Mater. 1993;5:260.CrossRefGoogle Scholar
  78. Lakshmi JL, Ihasz NJ, Miller JM. J Mol Catal. 2001;165:199.CrossRefGoogle Scholar
  79. Laurencin D, Smith ME. Prog Nucl Magn Reson Spectrosc. 2013;68:1.CrossRefGoogle Scholar
  80. Le Caer G, Bureau B, Massiot D. J Phys Condens Matter. 2010;22:065402.CrossRefGoogle Scholar
  81. Li A, Wang D, Xiang J, Newport RJ, Reinholdt MX, Mutin PH, Vantelon D, Bonhomme C, Smith ME, Laurencin D, Qiu D. J Non-Cryst Solids. 2011;257:3548.CrossRefGoogle Scholar
  82. Lin Z, Smith ME, Sowrey FE, Newport RJ. Phys Rev B. 2004;69:224107.CrossRefGoogle Scholar
  83. Lin KSK, Tseng YH, Mou Y, Hsu YC, Yang CM, Chan JCC. Chem Mater. 2005;17:4493.CrossRefGoogle Scholar
  84. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR. J Mater Chem. 2009;19:1276.CrossRefGoogle Scholar
  85. Lin Z, Jones JR, Hanna JV, Smith ME. Phys Chem Chem Phys. 2015;17:2540.CrossRefGoogle Scholar
  86. Lindner E, Schneller T, Mayer HA, Bertagnolli H, Ertel TS, Horner W. Chem Mater. 1997;9:1524.CrossRefGoogle Scholar
  87. Lindner E, Jäger A, Auer F, Wegner P, Mayer HA, Benez A, Adam D, Plies E. Chem Mater. 1998;10:217.CrossRefGoogle Scholar
  88. Lindner E, Brugger S, Steinbrecher S, Plies E, Mayer HA. J Mater Chem. 2001;11:1393.CrossRefGoogle Scholar
  89. Liu Z, Venkatachalam S, van Wuellen L. Solid State Ion. 2015;276:47.CrossRefGoogle Scholar
  90. MacKenzie KJD, Kemmit T. Thermochim Acta. 1999a;325:513.CrossRefGoogle Scholar
  91. MacKenzie KJD, Kemmit T. Thermochim Acta. 1999b;325:5.CrossRefGoogle Scholar
  92. MacKenzie KJD, Smith ME. Multinuclear solid state NMR of inorganic materials. Oxford: Pergamon Press; 2002.Google Scholar
  93. MacKenzie KJD, Meinhold RH, Patterson JE, Schneider H, Schmücker M, Voll D. J Eur Ceram Soc. 1996a;16:1299.CrossRefGoogle Scholar
  94. MacKenzie KJD, Meinhold RH, Brown IWM, White GV. J Eur Ceram Soc. 1996b;16:115.CrossRefGoogle Scholar
  95. Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR. Adv Func Mater. 2010;20:3835.CrossRefGoogle Scholar
  96. Massiot D, Farnan I, Gautier N, Trumeau D, Trokiner A, Coutures JP. Solid State Nucl Magn Reson. 1995;4:241.CrossRefGoogle Scholar
  97. Massiot D, Fayon F, Capron M, King I, LeCalver S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G. Magn Reson Chem. 2002;40:70.CrossRefGoogle Scholar
  98. Mead RN, Mountjoy G. Chem Mater. 2006;18:3956.CrossRefGoogle Scholar
  99. Meinhold RH, MacKenzie KJD. J Mater Chem. 2000;10:701.CrossRefGoogle Scholar
  100. Merwin LH, Sebald A, Rager H, Schneider H. Phys Chem Minerals. 1991;18:47.CrossRefGoogle Scholar
  101. Miller JM, Lakshmi LJ. J Phys Chem B. 1998;102:6465.CrossRefGoogle Scholar
  102. Miller JM, Lakshmi LJ. Appl Catal A. 2000;190:197.CrossRefGoogle Scholar
  103. Miller JM, Goodchild M, Lakshmi JL, Wails D, Hartman JS. Catal Lett. 1999;63:199.CrossRefGoogle Scholar
  104. Mrse AA, Bryant PL, Hormes FJ, Butler LG, Satyanarayana N, Ramabu B. J Non-Cryst Solids. 2003;318:296.CrossRefGoogle Scholar
  105. Mustarelli P, Quartarone E, Benevelli F. Mater Res Bull. 1997;32:679.CrossRefGoogle Scholar
  106. Niida H, Tokuda Y, Takahashi M, Uchino T, Yoko T. J Non-Cryst Solids. 2002;311:145.CrossRefGoogle Scholar
  107. Peeters MPJ, Wakelkamp WJJ, Kentgens APM. J Non-Cryst Solids. 1995;189:77.CrossRefGoogle Scholar
  108. Peeters MPJ, Kentgens APM. Solid State NMR. 1997;9:203.CrossRefGoogle Scholar
  109. Pickup DM, Mountjoy G, Wallidge GW, Anderson R, Cole JM, Newport RJ, Smith ME. J Mater Chem. 1999a;9:1299.CrossRefGoogle Scholar
  110. Pickup DM, Mountjoy G, Wallidge GW, Newport RJ, Smith ME. Phys Chem Chem Phys. 1999b;1:2527.CrossRefGoogle Scholar
  111. Pickup DM, Mountjoy G, Holland MA, Wallidge GW, Newport RJ, Smith ME. J Mater Chem. 2000;10:1887.CrossRefGoogle Scholar
  112. Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ. J Mater Chem. 2007;17:4777.CrossRefGoogle Scholar
  113. Pickup DM, Valappil SP, Moss RM, Twyman HL, Guerry P, Smith ME, Wilson M, Knowles JC, Newport RJ. J Mater Sci. 2009;44:1858.CrossRefGoogle Scholar
  114. Poolgasundarampillai G, Yu B, Tsigkou O, Wang D, Romer F, Bhakhri V, Giulani F, Stevens MM, McPhail DS, Smith ME, Hanna JV, Jones JR. Chem Eur J. 2014;20:8149.CrossRefGoogle Scholar
  115. Pozarnsky GA, McCormick AV. J Mater Chem. 1994;4:1749.CrossRefGoogle Scholar
  116. Qiu D, Guerry P, Knowles JC, Smith ME, Newport RJ. J Sol–gel Sci Techn. 2008;48:378.CrossRefGoogle Scholar
  117. Quartararo J, Guelton M, Rigole M, Amoureux JP, Fernandez C, Grimblot J. J Mater Chem. 1999;9:2637.CrossRefGoogle Scholar
  118. Rainho JP, Rocha J, Carlos LD, Almeida RM. J Mater Res. 2001;16:2369.CrossRefGoogle Scholar
  119. Rao KJ, Baskaran N, Ramakrishnan PA, Ravi BG, Karthikeyan A. Chem Mater. 1998;10:3109.CrossRefGoogle Scholar
  120. Ren J, Zhang L, Eckert H. J Sol–gel Sci Technol. 2014a;70:482.CrossRefGoogle Scholar
  121. Ren J, Zhang L, Eckert H. J Phys Chem C. 2014b;118:4906.CrossRefGoogle Scholar
  122. Schaudel B, Guermeur C, Sanchez C, Nakatani K, Delaire JA. J Mater Chem. 1997;7:61.CrossRefGoogle Scholar
  123. Schmücker M, Schneider H. Ber Bunsenges Phys Chem. 1996;100:1550.CrossRefGoogle Scholar
  124. Schneider H, Voll D, Saruhan B, Schmücker M, Schaller T, Sebald A. J Eur Ceram Soc. 1994;13:441.CrossRefGoogle Scholar
  125. Schraml-Marth M, Walther KL, Wokaun A, Handy BE, Baiker A. J Non-Cryst Solids. 1992;143:93.CrossRefGoogle Scholar
  126. Schurko RW. Acc Chem Res. 2013;46:1985.CrossRefGoogle Scholar
  127. Scolan E, Magnenet C, Massiot D, Sanchez C. J Mater Chem. 1999;9:2467.CrossRefGoogle Scholar
  128. Selvaraj U, Komameni S, Roy R. J Am Ceram Soc. 1990;73:3663.CrossRefGoogle Scholar
  129. Siegel R, Nakashima TT, Wasylishen RE. Concepts Magn Reson. 2005a;26A:47.CrossRefGoogle Scholar
  130. Siegel R, Nakashima TT, Wasylishen RE. Concepts Magn Reson. 2005b;26A:61.Google Scholar
  131. Smaihi M, Petit D, Gourbilleau F, Chaput F, Boilot JP. Solid State Ion. 1991;48:213.CrossRefGoogle Scholar
  132. Smith ME. Appl Magn Reson. 1993;4:1.CrossRefGoogle Scholar
  133. Smith ME, van Eck ERH. Prog NMR Spectrosc. 1999;34:159.CrossRefGoogle Scholar
  134. Soraru GD, Dandrea G, Campostrini R, Babonneau F, Mariotto G. J Am Ceram Soc. 1995;78:379.CrossRefGoogle Scholar
  135. Soraru GD, Babonneau F, Gervais C, Dallabona N. J Sol–Gel Sci Technol. 2000;18:11.CrossRefGoogle Scholar
  136. Steunou N, Forster S, Florian P, Sanchez C, Antonietti M. J Mater Chem. 2002;12:3426.CrossRefGoogle Scholar
  137. Styskalik A, Skoda D, Moravec Z, Roupcova P, Barnes CE, Pinkas J. RSC Adv. 2015;5:73670.CrossRefGoogle Scholar
  138. Suyal N, Hoebbel D, Menning M, Schmidt H. J Mater Chem. 1999;9:3061.CrossRefGoogle Scholar
  139. Taylor A, Holland D. J Non-Cryst Solids. 1993;152:1.CrossRefGoogle Scholar
  140. Templin M, Wiesner U, Spiess HW. Adv Mater. 1997;9:814.CrossRefGoogle Scholar
  141. Temuujin J, Okada K, MacKenzie KJD. Ceram Int. 1999;25:85.CrossRefGoogle Scholar
  142. Trimmel G, Badheka R, Babonneau F, Latoumerie J, Dempsey P, Bahloul-Houlier D, Parmentier J, Soraru GD. J Sol–Gel Sci Technol. 2003;26:279.CrossRefGoogle Scholar
  143. Uma T, Nakao A, Nogami M. Mater Res Bull. 2006;41:817.CrossRefGoogle Scholar
  144. Van Eck ERH, Smith ME, Kohn SC. Solid State NMR. 1999;15:181.CrossRefGoogle Scholar
  145. Van Wüllen L, Müller U, Jansen M. Chem Mater. 2000;12:2347.CrossRefGoogle Scholar
  146. Villegas MA, Sanz J, Fernández Navarro JM. J Non-Cryst Solids. 1990;121:171.CrossRefGoogle Scholar
  147. Völger KW, Kroke E, Gervais C, Saito T, Babonneau F, Riedel R, Iwamoto Y, Hirayama T. Chem Mater. 2003;15:755.CrossRefGoogle Scholar
  148. Walther KL, Wokaun A, Handy BE, Baiker A. J Non-Cryst Solids. 1991;134:47.CrossRefGoogle Scholar
  149. Wang LQ, Samuels WD, Exarhos GJ, Lee BI, Cao Z. J Mater Chem. 1998;8:165.CrossRefGoogle Scholar
  150. West GD, Diamond GG, Holland D, Smith ME, Lewis MH. J Membr Sci. 2002;203:53.CrossRefGoogle Scholar
  151. Wootton AM, Rappensberger M, Lewis MH, Kitchin S, Howes AP, Dupree R. J Non-Cryst Solids. 1996; 204: 17.Google Scholar
  152. Yabuta T, Bescher ER, MacKenzie JD, Tsuru K, Hayakawa S, Osaka A. J Sol–Gel Sci Technol. 2003;26:1219.CrossRefGoogle Scholar
  153. Yao Z, Kwak KT, Sakellariou D, Emsley L, Grandinetti PJ. Chem Phys Lett. 2000;327:85.CrossRefGoogle Scholar
  154. Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR. Langmuir. 2012;28:17465.CrossRefGoogle Scholar
  155. Zhang L, Chan JCC, Eckert H, Helsch G, Hoyer LP, Frischat GH. Chem Mater. 2003;15:2702.CrossRefGoogle Scholar
  156. Zhang L, Bogershausen A, Eckert H. J Am Ceram Soc. 2005;88:897.CrossRefGoogle Scholar
  157. Zhao H, Hiragushi K, Mizota Y. J Non-Cryst Solids. 2002;311:199.CrossRefGoogle Scholar
  158. Zhuang Q, Miller JM. Can J Chem. 2001;79:1224.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lancaster UniversityLancasterUK
  2. 2.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations