Synthesis of Non-siliceous Glasses and Their Structural Characterization by Solid-State NMR

  • Hellmut EckertEmail author
Reference work entry


Sol-gel glasses are an attractive area for both fundamental and applied research owing to their potential and actual use as catalysts, bioactive materials, photonic devices, and solid electrolytes. As some of these applications cannot be realized with glasses prepared by traditional melt cooling, a fundamental understanding of structure-property relations in this research field is an important research objective. Nuclear magnetic resonance (NMR) spectroscopy offers an element-selective, inherently quantitative, and experimentally very flexible approach for the structural elucidation of noncrystalline materials. The present chapter introduces the basic concepts of this technique, highlighting the use of advanced NMR methodology for characterizing short- and intermediate-range order in these systems. The current state of the literature on the structural characterization of the most prominent non-siliceous glasses, based on the network former species Al2O3, B2O3, and P2O5, is reviewed. By monitoring the structural evolution occurring during the sol-> gel-> glass transformations, NMR can yield important mechanistic information, which is useful for optimizing the synthesis parameters. In addition, detailed structural studies as a function of glass composition reveal the underlying principles of glass formation in these systems.



This chapter features work done during the course of the Schwerpunkt program “Vom Molekül zum Material,” funded under grants Ec168/4-1 and Ec168/4-2 from 2000 to 2007 by the Deutsche Forschungsgemeinschaft. Thanks are also due to the NRW Graduate School of Chemistry, funded from 2000 to 2009 at the WWU Münster by the State of North Rhine Westphalia. I wish to thank Professor Dr. Long Zhang (now at the Shanghai Institute of Optics and Fine Mechanics) for pioneering the aluminum lactate sol-gel process during his postdoctoral stay in my laboratory from 2001 to 2006. Thanks are further due to Professor Dr. Jinjun Ren (now at the Shanghai Institute of Optics and Fine Mechanics), Professor Dr. J. C. C. Chan (now at National Taiwan University, Taipei), Dr. Carla Araujo, Dr. Rashmi Deshpande, Dr. Tobias Uesbeck, and Dr. Lars Hoyer, for their invaluable contributions to the work being reviewed here, made during the course of PhD and postdoctoral work during the time period 2000–2015. The author further wishes to thank the late Professor Dr. Günther Heinz Frischat (formerly TU Clausthal) and Professor Dr. Dominik Eder (formerly WWU Münster, now TU Wien) for fruitful collaborations. Further support by the Brazilian funding agencies São Paulo Research Foundation FAPESP (CEPID Project 2013/07793-6, grant 2013/23490-3) and CNPq (Universal Project 477,053/2012-2) is most gratefully acknowledged.


  1. Amoureux JP, Fernandez C, Steuernagel S. Z filtering in MQMAS NMR. J Magn Reson A. 1996;123:116–8.CrossRefGoogle Scholar
  2. Aronne A, Turco M, Bagnasco G, Pernice P, Di Serio M, Clayden NJ, Marenna E, Farelli E. Synthesis of high-surface area phosphosilicate glasses by a modified sol-gel method. Chem Mater. 2005;17:2081–90.CrossRefGoogle Scholar
  3. Assink L, Kay L. Study of sol-gel chemical reaction kinetics by NMR. Annu Rev Mater Sci. 1991;21:491–513.CrossRefGoogle Scholar
  4. Babonneau F, Bonhomme C. In: Levy D, Zayat M, editors. Solid state NMR characterization of sol-gel materials: recent advances, Sol gel handbook III Weinheim: Wiley VCH; 2015. p. 651–73.Google Scholar
  5. Bonhomme C, Coelho C, Baccile N, Gervais C, Azais T, Babonneau F. Advanced solid state NMR techniques for the characterization of sol-gel materials. Acc Chem Res. 2007;40:738–46.CrossRefGoogle Scholar
  6. Bak M, Rasmussen JT, Nielsen NC. SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson. 2000;147:296–330.CrossRefGoogle Scholar
  7. Bertmer M, Eckert H. Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl Magn Reson. 1999;15:139–52.CrossRefGoogle Scholar
  8. Bertmer M, Züchner L, Chan JCC, Eckert H. Short and medium range order in sodium aluminoborate glasses: II. Site connectivities and cation distributions studied by rotational echo double resonance NMR spectroscopy. J Phys Chem B. 2000;104:6541–53.CrossRefGoogle Scholar
  9. Campelo JM, Jaraba M, Luna D, Luque R, Marinas JM, Romero AA, Navio JA, Macias M. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AlPO4 materials. Chem Mater. 2003;15:3352–4.CrossRefGoogle Scholar
  10. Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ. Sol-gel synthesis and structural characterisation of P2O5-B2O3-Na2O glasses for biomedical applications. J Mater Chem. 2009;19:150–8.CrossRefGoogle Scholar
  11. Carta D, Newport RJ, Knowles JC, Smith ME, Guerry P. Sol-gel produced sodium calcium phosphosilicates for bioactive applications: synthesis and structural characterization. Mater Chem Phys. 2011;130:690–6.CrossRefGoogle Scholar
  12. Carta D, Pickup DM, Newport RJ, Knowles JC, Smith ME, Drake KO. Structural studies of bioactive sol-gel phosphate based glasses. Phys Chem Glasses. 2005;46:365–71.Google Scholar
  13. Carta D, Knowles JC, Smith ME, Newport RJ. Synthesis and structural characterization of P2O5-CaO-Na2O sol-gel materials. J Non-Cryst Solids. 2007a;353:1141–9.CrossRefGoogle Scholar
  14. Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ. A structural study of sol-gel and melt-quenched phosphate-based glasses. J Non-Cryst Solids. 2007b;353:1759–65.CrossRefGoogle Scholar
  15. Chan JCC, Bertmer M, Eckert H. Site connectivities in amorphous materials studied by double resonance NMR of quadrupolar nuclei: high resolution 11B ↔ 27Al spectroscopy of aluminoborate glasses. J Am Chem Soc. 1999;121:5238–48.CrossRefGoogle Scholar
  16. Coelho C, Babonneau F, Azais T, Bonhomme-Coury L, Maquet J, Laurent G, Bonhomme C. Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived Solid State NMR techniques. J Sol Gel Sci Technol. 2006;40:181–9.CrossRefGoogle Scholar
  17. de Araujo CC, Zhang L, Eckert H. Sol-gel preparation of AlPO4-SiO2 glasses with high surface mesoporous structure. J Mater Chem. 2006;16:1323–31.CrossRefGoogle Scholar
  18. de Queiroz TB, Botelho MBS, Eckert H, de Camargo ASS. Strategies for reducing aggregation in solid state dye laser materials: rhodamine 6G incorporated in new mesoporous sol-gel hosts. J Appl Phys. 2013a;113.Google Scholar
  19. de Queiroz TB, Botelho MBS, Fernandez-Hernandez JM, Eckert H, Albuquerque RQ, de Camargo ASS. New luminescent host-guest system based on an iridium(III) complex: design, synthesis, and theoretical-experimental spectroscopic characterization. J Phys Chem B. 2013b;117:2966–75.Google Scholar
  20. D’Espinose de Lacaillerie JB, Fretigny C, Massiot D. J Magn Reson. 2008;192:244–51.CrossRefGoogle Scholar
  21. Deshpande RR, Zhang L, Eckert H. Sol-gel synthesis of glasses in the system Na2O-AlPO4-SiO2. Structural characterization by solid state NMR. J Mater Chem. 2009;19:1151–9.CrossRefGoogle Scholar
  22. Deshpande RR, Eckert H. Sol–gel preparation of mesoporous sodium aluminosilicate glasses: mechanistic and structural investigations by solid state nuclear magnetic resonance. J Mater Chem. 2009;19:3419–26.CrossRefGoogle Scholar
  23. Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K. Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int. 2016;42:14700–9.CrossRefGoogle Scholar
  24. Duer MJ. Introduction into solid state NMR spectroscopy. Oxford: Blackwell Publishing Ltd; 2004.Google Scholar
  25. Dumeignil F, Rigole M, Amoureux JP, Fernandez CGrimblot J. Synthesis of high surface area boria-alumina mixed oxides: Characterization by 11B- and 27Al-NMR. Colloids Surf A Physicochem Eng Asp. 1999;158:75–81.CrossRefGoogle Scholar
  26. Eckert H. Structural characterization of non-crystalline solids and glasses by solid state NMR Prog NMR Spectrosc. 1992;24:159–293.CrossRefGoogle Scholar
  27. Edén M, NMR Studies of oxide glasses. Ann Rep Prog Chem Sect C. 2012;108:177–231.Google Scholar
  28. Foroutan F, Walters NJ, Owens GJ, Mordan NJ, Kim HW, de Leeuw NH, Knowles JC. Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15). Biomed Mater. 2015;10:045025.CrossRefGoogle Scholar
  29. Foroutan F, de Leeuw NH, Martin RA, Palmer G, Owens GJ, Kim HW, Knowles JC, Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)X (TiO2)(0.35−X) bioresorbable glasses (x=0.05, 0.1, and 0.15), J Sol-Gel Sci Technol 2014;73:434–42CrossRefGoogle Scholar
  30. Franke D, Hudalla C, Eckert H. Heteronuclear X-Y double quantum MAS NMR in crystalline inorganic solids. Solid State Nucl Magn Reson. 1992;1:33–40.CrossRefGoogle Scholar
  31. Freude D, Haase J. Quadrupole effects in solid state nuclear magnetic resonance. In: NMR basic principles and progress. 29 Berlin: Springer; 1993. p. 1–90.Google Scholar
  32. Geen H, Titman JJ, Gottwald J, Spiess HW. Solid state proton multiple-quantum NMR with fast magic angle spinning. Chem Phys Lett. 1994;227:79–86.CrossRefGoogle Scholar
  33. Gullion T, Schaefer J. Rotational echo double resonance NMR. J Magn Reson. 1989;81:196–200.Google Scholar
  34. Gullion T, Vega A. Measuring heteronuclear dipolar couplings for I=1/2, S > 1/2 spin pairs by REDOR and REAPDOR NMR. Prog Nucl Magn Reson Spectrosc. 2005;47:123–6.CrossRefGoogle Scholar
  35. Hansen MR, Jakobsen HJ, Skibsted J. Structural environments for boron and aluminum in alumina-boria catalysts and their precursors studied by 27Al and 11B single and double resonance solid state NMR. J Phys Chem. 2008;112:7210–22.Google Scholar
  36. Harmer MA, Vega AJ, Flippen RB. Sol-gel synthesis of high surface area aluminum phosphate: a thermally reversible sol-gel system. Chem Mater. 1994;6:1903–5.CrossRefGoogle Scholar
  37. Harmer MA, Vega AJ. Nuclear-magnetic-resonance study of a high-surface-area aluminum phosphate-glass and its thermally reversible sol-gel precursor. Solid State Nucl Magn Reson. 1995;5:35–49.CrossRefGoogle Scholar
  38. He J, Ma P, Zhang G, Li R, Zhang L. Sol-gel derived mesoporous GaAlPO4 glass for heavy metal ion sequestration. RSC Adv. 2016;6:99149–57.CrossRefGoogle Scholar
  39. Helsch G, Hoyer LP, Frischat GH, Zhang L, Eckert H. Sol-gel synthesis of Na2O-Al2O3-P2O5 glasses and their characterization by AFM, SNMS, and NMR. J Sol Gel Sci Tech. 2005;33:341–5.CrossRefGoogle Scholar
  40. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res. 2000;52:601–12.CrossRefGoogle Scholar
  41. Liu Z, Venkatachalam S, van Wüllen L. Structure, phase separation and Li dynamics in sol-gel derived Li1+xAlxGe2-x(PO4)3. Solid State Ionics. 2015;276:47–55.CrossRefGoogle Scholar
  42. Liu Z, Venkatachalam S, Kirchhain H, van Wüllen L. Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2-x(PO4)3. Solid State Ionics. 2016;295:32–40.CrossRefGoogle Scholar
  43. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem. 2002;40:70–6.CrossRefGoogle Scholar
  44. Mathew R, Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, Garcia A, Acros D, Vallet-Regi M, Edén M. Direct probing of the phosphate ion distribution in bioactive silicate glasses by solid-state NMR: evidence for transitions between random/clustered scenarios. Chem Mater. 2013;25:1877–85.CrossRefGoogle Scholar
  45. Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J Am Chem Soc. 1995;117:12779–87.CrossRefGoogle Scholar
  46. Melchers S, Uesbeck T, Winter O, Eckert H, Eder D. Effect of aluminium ion incorporation on the bioactivity and structure in mesoporous bioactive glasses. Chem Mater. 2016;28:3254–64.CrossRefGoogle Scholar
  47. Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues ACM, Zanotto ED. Sol-gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite-zirconia glass-ceramics. Ceram Int. 2015;41:11024–45.CrossRefGoogle Scholar
  48. O’Dell LA. The WURST Kind of Pulses in Solid State NMR. Solid State Nucl Magn Reson. 2013;55-56:28–41.CrossRefGoogle Scholar
  49. Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ. New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J Mater Chem. 2007;17:4777–84.CrossRefGoogle Scholar
  50. Pickup DM, Valappil SP, Moss RM, Twyan HL, Guerry P, Smith ME, Wilson M, Knowles JC, Newport RJ. Preparation, structural characterization and antibacterial properties of Ga-doped sol-gel phosphate-based glass. J Mater Sci. 2009;44:1858–67.CrossRefGoogle Scholar
  51. Rao KJ, Baskaran N, Ramakrishnan PA, Ravi BG, Karthikeyan A. Structural and lithium ion transport studies in sol-gel-prepared lithium silicophosphate glasses. Chem Mater. 1998;10:3109–23.CrossRefGoogle Scholar
  52. Ren J, Eckert H. DQ-DRENAR: a new NMR technique to measure site-resolved magnetic dipole-dipole interaction in multispin systems: theory and validation on crystalline model compounds. J Chem Phys. 2013;138:164201.CrossRefGoogle Scholar
  53. Ren J, Eckert H. Applications of DQ-DRENAR to the structural analysis of phosphate glasses. Solid State Nucl Magn Reson. 2015;72:140–7.CrossRefGoogle Scholar
  54. Ren J, Zhang L, Eckert H. Sol-gel preparation and structural characterization of mesoporous Al2O3-SiO2 glasses. Sol Gel Sci Technol. 2014a;70:482–90.CrossRefGoogle Scholar
  55. Ren J, Zhang L, Eckert H. Medium range order in sol-gel prepared Al2O3-SiO2 glasses: new results from solid state NMR. J Phys Chem C. 2014b;118:4906–17.CrossRefGoogle Scholar
  56. Ren J, Doerenkamp C, Eckert H. High surface area mesoporous GaPO4-SiO2 sol-gel glasses: structural investigation by advanced solid state NMR. J Phys Chem C. 2016;120:1758–69.CrossRefGoogle Scholar
  57. Saalwächter K, Lange F, Matyjaszewski K, Huang CF, Graf R. BaBa xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson. 2011;212:204–15.CrossRefGoogle Scholar
  58. Schmedt auf der Günne J, Eckert H. High-resolution double quantum NMR: a new approach for the structural analysis of thiophosphates. Chem Eur J. 1998;4:1762–7.CrossRefGoogle Scholar
  59. Schmidt-Rohr K, Spiess HW. Solid state NMR and polymers. London: Academic Press; 1996.Google Scholar
  60. Schröder C, Ren J, Rodrigues ACM, Eckert H. Glass-to-crystal transition in Li1+xAlxGe2-x(PO4)3: structural aspects studied by solid state NMR. J Phys Chem C. 2014;118:9400–11.CrossRefGoogle Scholar
  61. Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M. Structural and in vitro study of cerium, gallium and zinc containing sol-gel bioactive glasses. J Mater Chem. 2012;22:13698–706.CrossRefGoogle Scholar
  62. Sitarz M, Bulat K, Szumera M. Aluminium influence on the crystallization and bioactivity of silico-phosphate glass from NaCaPO4-SiO2 system. J Non-Cryst Solids. 2010;356:224–31.CrossRefGoogle Scholar
  63. Smith ME, Holland D, Atomic scale structure of gel materials by solid state NMR, Handbook of sol-gel science and technology, Volum II, Sakka S, ed. Klüwer Boston 2004; 35-64.Google Scholar
  64. Strojek W, Eckert H. Medium-range order in sodium phosphate glasses: a quantitative rotational echo double resonance solid state NMR study. Phys Chem Chem Phys. 2006;8:2276–85.CrossRefGoogle Scholar
  65. Tiemann M, Fröba M. Mesostructured aluminophosphates from a single-source precursor. Chem Commun. 2002;2002:406–7.CrossRefGoogle Scholar
  66. Todan L, Anghel EM, Osiceanu P, Turcu RVF, Atkinson I, Simon S, Zaharescu M. Structural characterization of some sol-gel derived phosphosilicate glasses. J Mol Struct. 2015;1086:161–71.CrossRefGoogle Scholar
  67. Tsai TWT, Mou Y, Tseng YH, Zhang L, Chan JCC. Solid-state NMR study of bioactive binary borosilicate glasses. J Phys Chem Solids. 2008;69:2628–33.CrossRefGoogle Scholar
  68. Turcu FRV, Samoson A, Maier M, Trandafir DL, Simon S. high fraction of penta-coordinated aluminum and gallium in lanthanum-aluminum-gallium borate. J Am Ceram Soc. 2016;99:2795–800.CrossRefGoogle Scholar
  69. Valappil SP, Ready D, Neel EAA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC. Acta Biomater. 2009;5:1198–210.CrossRefGoogle Scholar
  70. Valappil SP, Read D, Neel EAA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC. Adv Funct Mater. 2008;18:732–41.CrossRefGoogle Scholar
  71. Van Vleck JH. The dipolar broadening of magnetic resonance lines in crystals. Phys Rev. 1948;74:1168–83.CrossRefGoogle Scholar
  72. Wright AC. Diffraction studies of glass structure. J Non-Cryst Solids. 1990;123:129–48.CrossRefGoogle Scholar
  73. Zachariasen WH. The atomic arrangement in glass. J Am Chem Soc. 1932;54:3841–51.CrossRefGoogle Scholar
  74. Zhang L, Chan JCC, Eckert H, Helsch G, Hoyer LP, Frischat GH. A novel sol-gel synthesis of sodium aluminophosphate glass based on aluminum lactate. Chem Mater. 2003;15:2702–10.CrossRefGoogle Scholar
  75. Zhang L, Eckert H. Sol-gel synthesis of aluminum phosphate glasses: mechanistic studies by solution and solid state NMR. J Mater Chem. 2004a;14:1605–15.CrossRefGoogle Scholar
  76. Zhang L, Eckert H. Multinuclear NMR studies of the sol-gel preparation of sodium aluminophosphate glasses. Solid State Nucl Magn Reson. 2004b;26:132–46.CrossRefGoogle Scholar
  77. Zhang L, Eckert H, Helsch G, Frischat GH. Network modification of glassy AlPO4: sol-gel synthesis and structural characterization of the system Na2O-AlPO4. Z Phys Chem. 2005a;219:71–87.CrossRefGoogle Scholar
  78. Zhang L, Eckert H. Synthesis and structural evolution of Al2O3-B2O3-P2O5 gels and glasses. J Mater Chem. 2005;15:1640–53.CrossRefGoogle Scholar
  79. Zhang L, Bögershausen A, Eckert H. Mesoporous AlPO4 glass from a simple aqueous sol-gel route. J Am Ceram Soc. 2005b;88:897–902.CrossRefGoogle Scholar
  80. Zhang L, de Araujo CC, Eckert H. A new sol-gel route to aluminum fluoride phosphate glasses: mechanistic investigations by NMR spectroscopy. Chem Mater. 2005c;17:3101–7.CrossRefGoogle Scholar
  81. Zhang L, Eckert H. Short- and medium-range order in sodium aluminophosphate glasses: new insights from high-resolution dipolar solid state NMR spectroscopy. J Phys Chem B. 2006;110:8946–58.CrossRefGoogle Scholar
  82. Zhang L, de Araujo CC, Eckert H. Aqueous sol-gel preparation of Na2O-Al2O3-B2O3 glasses: structural characterization by liquid and solid state NMR spectroscopy. Phys Chem Glasses. 2006;47:7–15.Google Scholar
  83. Zhang L, de Araujo CC, Eckert H. Aluminum lactate – an attractive precursor for sol-gel synthesis of alumina-based glasses. J Non-Cryst Solids. 2007a;353:1255–60.CrossRefGoogle Scholar
  84. Zhang L, de Araujo CC, Eckert H. Structural role of fluoride in aluminophosphate sol-gel glasses: high-resolution double-resonance NMR studies. J Phys Chem B. 2007b;111:10402–12.CrossRefGoogle Scholar
  85. Zhang L, Eckert H. Influence of phosphate precursors on the structures of sols, gels and glasses. J Non-Cryst Solids. 2008;354:1331–7.CrossRefGoogle Scholar
  86. Zhao S, Li Y, Li D. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process. J Mater Sci Mater Med. 2011;22:201–8.CrossRefGoogle Scholar
  87. Züchner L, Chan JCC, Müller-Warmuth W, Eckert H. Short range order and site connectivities in sodium aluminoborate glasses:I. Quantification of local environments by high-resolution 11B, 23Na, and 27Al solid state NMR. J Phys Chem. 1998;102:4495–506.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieWestfälische Wilhelms Universität MünsterMünsterGermany
  2. 2.Instituto de Física, São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations