Advertisement

Hydrocephalus in Achondroplasia and Venous Hypertension

  • Sudheesh Ramachandran
  • Paul Steinbok
Living reference work entry

Abstract

The cause of hydrocephalus in achondroplasia is believed to be chronic venous hypertension, which in turn, is due to the anomalous neuroanatomy associated with this disorder. The venous anatomy in achondroplasia is now known to undergo substantial compensation during development, which could partly account for the benign nature of hydrocephalus in this population. The management is controversial, owing to inadequate understanding of the natural history and pathophysiology of this condition. This chapter recapitulates our current understanding of hydrocephalus in achondroplasia, with special emphasis on the role of venous hypertension, its impact on CSF circulation and management of hydrocephalus.

Keywords

Achondroplasia Ventriculomegaly Hydrocephalus Venous hypertension Foraminal stenosis Vertebrovenous plexus 

References

  1. Arnautovic KI, Al-Mefty O, Pait TG, Krisht AF, Husain MM (1997) The suboccipital cavernous sinus. J Neurosurg 86:252–262CrossRefPubMedGoogle Scholar
  2. Bagley CA, Pindrik JA, Bookland MJ, Camara-Quintana JQ, Carson BS (2006) Cervicomedullary decompression for foramen magnum stenosis in achondroplasia. J Neurosurg 104:166–172PubMedGoogle Scholar
  3. Bateman GA (2007) Magnetic resonance imaging quantification of compliance and collateral flow in late-onset idiopathic aqueductal stenosis: venous pathophysiology revisited. J Neurosurg 107:951–958CrossRefPubMedGoogle Scholar
  4. Batson OV (1957) The vertebral vein system. Caldwell lecture, 1956. Am J Roentgenol Radium Therapy Nucl Med 78:195–212Google Scholar
  5. Bellus GA, Hefferon TW, De Luna RO, Hecht JT, Horton WA, Machado M, Kaitila I, McIntosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. American journal of human genetics 56(2):368PubMedPubMedCentralGoogle Scholar
  6. Bito LZ, Bradbury MW, Davson H (1966) Factors affecting the distribution of iodide and bromide in the central nervous system. J Physiol 185:323–354CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 25:461–473CrossRefPubMedGoogle Scholar
  8. Dimario FJ Jr, Ramsby GR, Burleson JA, Greensheilds IR (1995) Brain morphometric analysis in achondroplasia. Neurology 45:519–524CrossRefPubMedGoogle Scholar
  9. Dandy WE (1921) Hydrocephalus in achondroplasia. Bull Johns Hopkins Hosp 32:5–10Google Scholar
  10. Eerdincler P, Dashti R, Kaynar MY, Canbaz B, Ciplak N, Kuday C (1997) Hydrocephalus and chronically increased intracranial pressure in achondroplasia. Childs Nerv Syst 13:345–348CrossRefGoogle Scholar
  11. Etus V, Ceylan S (2005) The role of endoscopic third ventriculostomy in the treatment of triventricular hydrocephalus seen in children with achondroplasia. J Neurosurg 103:260–265PubMedGoogle Scholar
  12. Evans WA (1942) An encephalographic ratio for estimating the size of the cerebral ventricles: further experience with serial observations. Am J Dis Child 64:820–830CrossRefGoogle Scholar
  13. Friedman WA, Mickle JP (1980) Hydrocephalus in achondroplasia: a possible mechanism. Neurosurgery 7:150–153CrossRefPubMedGoogle Scholar
  14. Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR Am J Neuroradiol 17:431–438PubMedGoogle Scholar
  15. Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of intracranial and spinal CSF- circulation demonstrated by MR imaging. Acta Radiol 34:321–328CrossRefPubMedGoogle Scholar
  16. Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86:125–132CrossRefPubMedGoogle Scholar
  17. Guinane JE (1977) Why does hydrocephalus progress? J Neurol Sci 32:1–8CrossRefPubMedGoogle Scholar
  18. Hirabuki N, Watanabe Y, Mano T, Fujita N, Tanaka H, Ueguchi T, Nakamura H (2000) Quantitation of flow in the superior sagittal sinus performed with cine phase-contrast MR imaging of healthy and achondroplastic children. AJNR Am J Neuroradiol 21:1497–1501PubMedGoogle Scholar
  19. Horton WA, Rotter JI, Rimoin DL, Scott CI, Hall JG (1978) Standard growth curves for achondroplasia. J Pediatr 93:435–438CrossRefPubMedGoogle Scholar
  20. Kaitila I, Mcintosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373PubMedPubMedCentralGoogle Scholar
  21. King JA, Vachhrajani S, Drake JM, Rutka JT (2009) Neurosurgical implications of achondroplasia. J Neurosurg Pediatr 4:297–306CrossRefPubMedGoogle Scholar
  22. Landau K, Gloor BP (1994) Therapy-resistant papilledema in achondroplasia. J Neuroophthalmol 14:24–28CrossRefPubMedGoogle Scholar
  23. Lundar T, Bakke SJ, Nornes H (1990) Hydrocephalus in an achondroplastic child treated by venous decompression at the jugular foramen. Case report. J Neurosurg 73:138–140CrossRefPubMedGoogle Scholar
  24. Mitamoto J, Tatsuzara K, Sasajima H, Mineura K (2010) Usefulness of phase contrast cine mode magnetic resonance imaging for surgical decision making in patients with hydrocephalus combined with achondroplasia. Case report. Neurol Med Chir (Tokyo) 50:1116–1118CrossRefGoogle Scholar
  25. Moritani T, Aihara T, Oguma E, Makiyama Y, Nishimoto H, Smoker WR, Sato Y (2006) Magnetic resonance venography of achondroplasia: correlation of venous narrowing at the jugular foramen with hydrocephalus. Clin Imaging 30:195–200CrossRefPubMedGoogle Scholar
  26. Mukherjee D, Pressman BD, Krakow D, Rimoin DL, Danielpour M (2014) Dynamic cervicomedullary cord compression and alterations in cerebrospinal fluid dynamics in children with achondroplasia: review of an 11-year surgical case series. J Neurosurg Pediatr 14:238–244CrossRefPubMedGoogle Scholar
  27. O’hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249CrossRefPubMedGoogle Scholar
  28. Pierre-Kahn A, Hirsch JF, Renier D, Metzger J, Maroteaux P (1980) Hydrocephalus and achondroplasia. A study of 25 observations. Childs Brain 7:205–219PubMedGoogle Scholar
  29. Rollins N, Booth T, Shapiro K (2000) The use of gated cine phase contrast and MR venography in achondroplasia. Childs Nerv Syst 16:569–575; discussion 575–7CrossRefPubMedGoogle Scholar
  30. Ruiz-Garcia M, Tovar-Baudin A, Del Castillo-Ruiz V, Rodriguez HP, Collado MA, Mora TM, Rueda-Franco F, Gonzalez-Astiazaran A (1997) Early detection of neurological manifestations in achondroplasia. Childs Nerv Syst 13:208–213CrossRefPubMedGoogle Scholar
  31. Ryken TC, Menezes AH (1994) Cervicomedullary compression in achondroplasia. J Neurosurg 81:43–48CrossRefPubMedGoogle Scholar
  32. Sainte-Rose C, Lacombe J, Pierre-Kahn A, Renier D, Hirsch JF (1984) Intracranial venoussinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736CrossRefPubMedGoogle Scholar
  33. San Millan Ruiz D, Gailloud P, Rufenacht DA, Delavette J, Henry F, Fasel JH (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23:1500–1508PubMedGoogle Scholar
  34. Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46:243–260CrossRefPubMedGoogle Scholar
  35. Schreiber SJ, Lurtzing F, Gotze R, Doepp F, Klingebiel R, Valdueza JM (2003) Extrajugular pathways of human cerebral venous blood drainage assessed by duplex ultrasound. J Appl Physiol (1985) 94:1802–1805CrossRefGoogle Scholar
  36. Shapiro K, Fried A, Marmarou A (1985) Biomechanical and hydrodynamic characterization of the hydrocephalic infant. J Neurosurg 63:69–75CrossRefPubMedGoogle Scholar
  37. Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48CrossRefPubMedGoogle Scholar
  38. Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9:73–81CrossRefPubMedGoogle Scholar
  39. Thompson NM, Hecht JT, Bohan TP, Kramer LA, Davidson K, Brandt ME, Fletcher JM (1999) Neuroanatomic and neuropsychological outcome in school-age children with achondroplasia. Am J Med Genet 88:145–153CrossRefPubMedGoogle Scholar
  40. Tobinick E, Vega CP (2006) The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed 8:53PubMedGoogle Scholar
  41. Valdueza JM, Von Munster T, Hoffman O, Schreiber S, Einhaupl KM (2000) Postural dependency of the cerebral venous outflow. Lancet 355:200–201CrossRefPubMedGoogle Scholar
  42. Yamada H, Nakamura S, Tajima M, Kageyama N (1981) Neurological manifestations of pediatric achondroplasia. J Neurosurg 54:49–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.British Columbia Children’s Hospital and the University of British ColumbiaVancouverCanada
  2. 2.Division of Pediatric Neurosurgery, British Columbia Hospital, and Division of Neurosurgery, Department of SurgeryUniversity of British ColumbiaVancouverCanada
  3. 3.Pediatric NeurosurgeryBC Children’s HospitalVancouverCanada

Personalised recommendations