Radiology of Hydrocephalus

From Morphology to Hydrodynamics and Pathogenesis
  • Charles RaybaudEmail author
Living reference work entry


Cerebrospinal fluid (CSF) is the portion of the extracellular fluid of the brain that is collected in the ventricles and extra-neural spaces. Its role is dual: mechanically it provides the brain with cushioning and buoyancy and distributes evenly the force of the systolic pressure wave; biologically it allows the transport of many secreted molecules to the periventricular zones and circumventricular organs. CSF is secreted by the choroid plexuses and absorbed passively at dural absorption sites, but simultaneously, water can be actively transported by Aquaporin-4 (AQP4) channels in and out the parenchyma across the ependymal and subpial surfaces as well as into the capillaries. Based on this, hydrocephalus can be considered the single mechanical consequence of multiple processes which may affect secretion, absorption, transport, and movements of the CSF, either because of a loss of compliance, because of a secretion-absorption mismatch, or both. Mechanically it affects the brain by compressing the vascular bed, which results in parenchymal ischemic changes. The CSF-parenchyma exchanges may also be affected by the CSF flow alteration, the impact of hydrocephalus on the ependyma and subependymal progenitor zone, and the brain lesions due to the causal pathology. In this perspective, the roles of imaging are to identify hydrocephalus, to understand its mechanism (compliance and secretion-absorption mismatch), to evaluate its effects on the parenchyma, and to analyze the etiology-related pathology in various clinical contexts. Postoperatively, imaging aims at assessing the mechanical efficacy of the CSF diversion and the lack of short-term and long-term complications.


CSF pathways, development CSF dynamics Hydrocephalus, pathogenetic processes Hydrocephalus, radiologic assessment Hydrocephalus, follow-up Imaging 


  1. ACR-SPR Practice Parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI) (2015).
  2. Agre P, Preston GM, Smith BL et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Phys 34:F463–F476Google Scholar
  3. Akbik F, Cafferty WB, Strittmatter SM (2012) Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 235:43–52PubMedCrossRefGoogle Scholar
  4. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17PubMedCrossRefGoogle Scholar
  5. Alperin NJ, Lee SH, Loth F et al (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure non-invasively by means of MR imaging. Baboon and human study. Radiology 217:877–885PubMedCrossRefGoogle Scholar
  6. Andresen M, Juhler M (2012) Multiloculated hydrocephalus: a review of current problems in classification and treatment. Childs Nerv Syst 28:357–362PubMedCrossRefGoogle Scholar
  7. Anei R, Hanashi Y, Hiroshima S et al (2011) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Neurol Med Chir (Tokyo) 51:437–441CrossRefGoogle Scholar
  8. Arichi T, Counsell SJ, Allievi AG et al (2014) The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy. Neuroradiology 56:985–994PubMedPubMedCentralCrossRefGoogle Scholar
  9. Artru AA (1999) Spinal cerebrospinal fluid chemistry and physiology. In: Yaksh TL (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 177–238Google Scholar
  10. Assaf Y, Ben-Sira L, Constantini S et al (2006) Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:1717–1724PubMedGoogle Scholar
  11. Aziz AA, Coleman L, Morokoff A, Maixner W (2005) Diffuse choroid plexus hyperplasia: an under-diagnosed cause of hydrocephalus in children? Pediatr Radiol 35:815–818PubMedCrossRefGoogle Scholar
  12. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology and pathophysiology. J Cereb Blood Flow Metab 22:367–378PubMedCrossRefGoogle Scholar
  13. Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and results in the formation of hydrocephalus. Devel Dis 132:5329–5339Google Scholar
  14. Barkovich AJ, Newton TH (1989) Aqueductal stenosis: evidence of a broad spectrum of tectal distortion. Am J Neuroradiol 10:471–475PubMedGoogle Scholar
  15. Bateman GA, Smith RL, Siddique SH (2007) Idiopathic hydrocephalus in children and idiopathic intracranial hypertension in adults: two manifestations of the same physiopathological process? J Neurosurg 107(6 Suppl Pediatrics):439–444PubMedGoogle Scholar
  16. Benarroch EE (2011) Circumventricular organs. Receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204PubMedCrossRefGoogle Scholar
  17. Beni-Adani L, Biani N, Ben-Sirah L, Constantini S (2006) The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Childs Nerv Syst 22:1543–1563PubMedCrossRefGoogle Scholar
  18. Bergsneider M, Egnor MR, Johnston M et al (2006) What we don’t (but should) know about hydrocephalus. J Neurosurg 104(3 Suppl Pediatrics):157–159PubMedGoogle Scholar
  19. Bering EA (1952) Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg 9:275–287PubMedCrossRefGoogle Scholar
  20. Bering EA (1954) Water exchange in the brain and cerebrospinal fluid. J Neurosurg 11:234–242PubMedCrossRefGoogle Scholar
  21. Bering EA (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Neurosurg Chicago 73:165–172Google Scholar
  22. Bering EA (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413PubMedCrossRefGoogle Scholar
  23. Bering EA, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063PubMedCrossRefGoogle Scholar
  24. Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262PubMedCrossRefGoogle Scholar
  25. Blake JA (1900) The roof and lateral recesses of the fourth ventricle, considered morphologically and embryologically. J Comp Neurol 10:79–108CrossRefGoogle Scholar
  26. Bondy C, Chin E, Smith BL et al (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 90:4500–4504PubMedCrossRefGoogle Scholar
  27. Bouchard S, Davey MG, Rintoul NE et al (2003) Correction of hindbrain herniation and anatomy of the vermis after in utero repair of myelomeningocele in sheep. J Pediatr Surg 38:451–458PubMedCrossRefGoogle Scholar
  28. Bourgeois M, Sainte-Rose C, Cinalli G et al (1999) Epilepsy in children with shunted hydrocephalus. J Neurosurg 90:274–281PubMedCrossRefGoogle Scholar
  29. Bouyssi-Kobar M, du Plessis AJ, Robertson RL, Limperopoulos C (2015) Fetal magnetic resonance imaging: exposure time and functional outcome at preschool age. Pediatr Radiol 45:1823–1830PubMedCrossRefGoogle Scholar
  30. Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contribution to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol 281:R909–R916PubMedCrossRefGoogle Scholar
  31. Bradley WG (2015) CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR Am J Neuroradiol 36:831–838PubMedCrossRefGoogle Scholar
  32. Bradley WG, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159:611–616PubMedCrossRefGoogle Scholar
  33. Bradley WG, Whitemore AR, Kortman KE et al (1991) Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466PubMedCrossRefGoogle Scholar
  34. Braun KPJ, Gooskens RHJM, Vandertop WP et al (2003) 1H magnetic resonance spectroscopy in human hydrocephalus. J Magn Reson Imag 17:291–299CrossRefGoogle Scholar
  35. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10PubMedPubMedCentralCrossRefGoogle Scholar
  36. Britz GW, Kim DK, Loeser JD (1996) Hydrocephalus secondary to diffuse villous hyperplasia of the choroid plexus. J Neurosurg 85:689–691PubMedCrossRefGoogle Scholar
  37. Brocklehurst G (1969) The development of the cerebrospinal fluid pathway with particular reference to the roof of the fourth ventricle. J Anat 105:467–475PubMedPubMedCentralGoogle Scholar
  38. Brodbelt A, Stoodley M (2007) CSF pathways: a review. Brit. J Neurosurg 21:510–520CrossRefGoogle Scholar
  39. Bruce DA, Weprin B (2001) The slit ventricle syndrome. Neurosurg Clin N Am 36:709–717CrossRefGoogle Scholar
  40. Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Review. Brain Res Rev 65:99–112PubMedCrossRefGoogle Scholar
  41. Bulat M, Lupret V, Orešković D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Anthropol 32(Suppl 1):43–50Google Scholar
  42. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedCrossRefGoogle Scholar
  43. Cagneaux M, Vasiljevic A, Massoud M et al (2013) Severe second-trimester obstructive ventriculomegaly related to disorders of diencephalic, mesencephalic and rhombencephalic differentiation. Ultrasound Obstet Gynecol 42:596–602PubMedCrossRefGoogle Scholar
  44. Caldarelli M, Novegno F, Di Rocco C (2009) A late complication of CSF shunting: an acquired Chiari 1 malformation. Childs Nerv Syst 25:443–452PubMedCrossRefGoogle Scholar
  45. Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal pulse wave in intracranial pressure. J Neurosurg 59:817–821PubMedCrossRefGoogle Scholar
  46. Carrera E, Kim DJ, Castellani G et al (2010) What shapes pulse amplitude of intracranial pressure? J Neurotrauma 27:317–324PubMedCrossRefGoogle Scholar
  47. Castañeyra-Perdomo A, Meyer G, Carmona-Calero E et al (1994) Alterations of the subcommissural organ in the human fetal brain. Dev Brain Res 79:316–320CrossRefGoogle Scholar
  48. Catala M (2007) Carbonic anhydrase activity during development of the choroid plexus in the human fetus. Childs Nerv Syst 13:364–368CrossRefGoogle Scholar
  49. Cataltelpe O, Liptzin D, Jolley L, Smith TW (2010) Diffuse villous hyperplasia of the choroid plexus and its surgical management. J Neurosurg Pediatr 5:518–522CrossRefGoogle Scholar
  50. Cavalheiro S, Moron AF, Zymberg ST, Dastoli P (2003) Fetal hydrocephalus – prenatal treatment. Childs Nerv Syst 19:561–573PubMedCrossRefGoogle Scholar
  51. Chang CC, Kuwana N, Ito S, Ikegami T (1999) Prediction of effectiveness of shunting in patients with normal pressure hydrocephalus by cerebral blood flow measurement and computed tomography cisternography. Neurol Med Chir (Tokyo) 39:845–846CrossRefGoogle Scholar
  52. Chaumas PD, Armstrong DC, Drake JM et al (1993) Tonsillar herniation: the rule rather than the exception after lumboperitoneal shunting in the pediatric population. J Neurosurg 78:568–573CrossRefGoogle Scholar
  53. Chaumas P, Tyagi A, Livinston J (2001) Hydrocephalus – what’s new? Arch Dis Child Fetal Neonaal Ed 85:F149–F154CrossRefGoogle Scholar
  54. Chi JH, Fullerton HJ, Gupta N (2005) Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979–1998. J Neurosurg 103(Pediatrics 2):113–118PubMedGoogle Scholar
  55. Childe AE, McNaughton FL (1942) Diverticula of the lateral ventricles extending in the posterior fossa. Arch Neurol Psychiatr 47:768–778CrossRefGoogle Scholar
  56. Choux M, Genitori L, Lang D et al (1992) Shunt implantation: reducing the incidence of shunt infection. J Neurosurg 77:875–880PubMedCrossRefGoogle Scholar
  57. Cinalli G, Sainte-Rose C, Lellouch-Tubiana A et al (1995) Hydrocephalus associated with intramedullary low-grade glioma. Illustrative case and review of the literature. J Neurosurg 83:480–485PubMedCrossRefGoogle Scholar
  58. Cinalli G, Sainte-Rose C, Kollar EM et al (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88:209–214PubMedCrossRefGoogle Scholar
  59. Cinalli G, Spennato P, Savarese L et al (2006) Endoscopic aqueductoplasty and placement of a stent in the cerebral aqueduct in the management of isolated fourth ventricle in children. J Neurosurg 104(1 Suppl):21–27PubMedGoogle Scholar
  60. Cinalli G, Spennato P, Alibert F, Cianciulli E (2010) Chapter 8: aqueductal stenosis. In: Mallucci C, Sgouros S (eds) Cerebrospinal fluid disorders. Informa Healthcare, New York/London, pp 154–188Google Scholar
  61. Cinalli G, Spennato P, Nastro A et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst 27:1621–1642PubMedCrossRefGoogle Scholar
  62. Citrin CM, Sherman JL, Gangarosa RE, Scanlon D (1986) Physiology of the CSF flow void sign: modification by cardiac gating. Am J Neuroradiol 7:1021–1024Google Scholar
  63. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276PubMedCrossRefGoogle Scholar
  64. Cutler RWP, Page L, Galicich G, Watters GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91:707–720PubMedCrossRefGoogle Scholar
  65. D’Addario V, Rossi AC (2012) Neuroimaging of ventriculomegaly in the fetal period. Semin Fet Neonat Med 17:310–318CrossRefGoogle Scholar
  66. Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482CrossRefGoogle Scholar
  67. De Wit OA, den Dunnen WFA, Sollie KM et al (2008) Pathogenesis of cerebral malformations in human fetuses with myelomeningocele. Cerebrospinal Fluid Res 24:563–575Google Scholar
  68. Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585PubMedCrossRefGoogle Scholar
  69. Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73PubMedCrossRefGoogle Scholar
  70. Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361PubMedCrossRefGoogle Scholar
  71. Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169PubMedCrossRefGoogle Scholar
  72. Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346PubMedCrossRefGoogle Scholar
  73. Demerens C, Stankoff B, Logak M et al (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93:9887–9892PubMedCrossRefGoogle Scholar
  74. Dennis M, Fitz CR, Netley CT et al (1981) The intelligence of hydrocephalic children. Arch Neurol 38:607–615PubMedCrossRefGoogle Scholar
  75. Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198PubMedCrossRefGoogle Scholar
  76. Di Rocco C (1994) Is the slit ventricle always a slit ventricle syndrome? Childs Nerv Syst 10:49–58PubMedCrossRefGoogle Scholar
  77. Di Rocco C, Iannelli A (1997) Poor outcome of bilateral congenital choroid plexus papillomas with extreme hydrocephalus. Eur Neurol 37:33–37PubMedCrossRefGoogle Scholar
  78. Di Rocco C, Velardi F (2003) Acquired Chiari I malformation managed by supratentorial enlargement. Childs Nerv Syst 19:800–807PubMedCrossRefGoogle Scholar
  79. Di Rocco C, Maira G, Rossi G, Vignati A (1976) Cerebrospinal fluid pressure studies in normal pressure hydrocephalus and cerebral atrophy. Eur Neurol 14:119–128PubMedCrossRefGoogle Scholar
  80. Di Rocco C, Pettorossi VE, Caldarelli M et al (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52PubMedCrossRefGoogle Scholar
  81. Dinçer A, Kohan S, Özek MM (2009) Is all “communicating” hydrocephalus really communicating? Prospective study on the value of 3D-constructive interference in steady-state sequence at 3T. AJNR Am J Neuroradiol 30:1898–1906PubMedCrossRefGoogle Scholar
  82. Ding Y, McAllister JP, Yao B et al (2001) Neuron tolerance during hydrocephalus. Neuroscience 106:659–667PubMedCrossRefGoogle Scholar
  83. Dominguez-Pinos MD, Páez P, Jiménez AJ et al (2005) Ependymal denudation and alterations of the subependymal zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604PubMedCrossRefGoogle Scholar
  84. Drake JN, Canadian Pediatric Neurosurgery Group (2007) Endoscopic third ventriculoscopy in pediatric patients: the Canadian experience. Neurosurgery 60:881–886PubMedCrossRefGoogle Scholar
  85. Drake JM, Kestle JRW, Tuli S (2000) CSF shunts 50 years on – past, present and future. Childs Nerv Syst 16:800–804PubMedCrossRefGoogle Scholar
  86. Dziegielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20PubMedCrossRefGoogle Scholar
  87. Ehrlich S, McComb JG, Hyman S, Weiss MH (1989) Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg 70:926–931CrossRefGoogle Scholar
  88. Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. Am J Neuroradiol 14:1301–1307PubMedGoogle Scholar
  89. Epstein F, Hochwald GM, Ransohoff J (1973) Neonatal hydrocephalus treated by compressive head wrapping. Lancet 1:634PubMedCrossRefGoogle Scholar
  90. Epstein FJ, Fleisher AS, Hochwald GM, Ransohoff J (1974) Subtemporal craniectomy for recurrent shunt obstruction secondary to small ventricles. J Neurosurg 41:29–31PubMedCrossRefGoogle Scholar
  91. Erşahin Y (2007) Endoscopic aqueductoplasty. Childs Nerv Syst 23:143–150PubMedCrossRefGoogle Scholar
  92. Falhauer K, Smitz P (1978) Overdrainage phenomena in shunt treated hydrocephalus. Acta Neurochir (Wien) 45:89–101CrossRefGoogle Scholar
  93. Fallah A, Wang AC, Weil AG et al (2016) Predictors of outcome following cerebral aqueductoplasty: an individual participant data meta-analysis. Neurosurgery 78:285–296PubMedCrossRefGoogle Scholar
  94. Ferland RJ, Batiz LF, Neal J et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516PubMedCrossRefGoogle Scholar
  95. Fischbein NJ, Ciricillo SF, Barr RM et al (1998) Endoscopic third ventriculostomy: MR assessment of patency with 2Dcine phase-contrast versus T2 weighted fast spin echo technique. Pediatr Neurosurg 28:70–78PubMedCrossRefGoogle Scholar
  96. Fletcher JM, McCauley SR, Brandt ME et al (1996) Regional brain tissue composition in children with hydrocephalus: relationships with cognitive development. Arch Neurol 53:549–557PubMedCrossRefGoogle Scholar
  97. Forghani R, Farb RI (2008) Diagnosis and temporal evolution of signs of intracranial hypotension on MRI of the brain. Neuroradiology 50:1025–1034PubMedCrossRefGoogle Scholar
  98. Fox RJ, Walji AH, Mielke B et al (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:84–91PubMedCrossRefGoogle Scholar
  99. Fransen E, Schrander-Stumpel C, Vits L et al (1994) X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene. Hum Mol Genet 3:2255–2256PubMedCrossRefGoogle Scholar
  100. Fujimoto Y, Matsushita H, Plese JP, Marino R (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Pediatr Neurosurg 40:32–36PubMedCrossRefGoogle Scholar
  101. Fujimura M, Onuma T, Kameyama M et al (2004) Hydrocephalus due to cerebrospinal fluid hyperproduction by bilateral choroid plexus papillomas. Childs Nerv Syst 20:485–488PubMedGoogle Scholar
  102. Futagi Y, Susuki Y, Toribe Y, Morimoto K (2002) Neurodevelopmental outcome in children with fetal hydrocephalus. Pediatr Neurol 27:111–116PubMedCrossRefGoogle Scholar
  103. Gabriel RS, McComb JG (1985) Malformations of the central nervous system. In: Menkes JH (ed) Textbook of child neurology. Lea and Fibiger, Philadelphia, pp 234–253Google Scholar
  104. Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25:205–215PubMedCrossRefGoogle Scholar
  105. Garne E, Loane M, Addor MC et al (2010) Congenital hydrocephalus – prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol 14:150–155PubMedCrossRefGoogle Scholar
  106. Girard NJ, Raybaud CA (2001) Ventriculomegaly and pericerebral CSF collection in the fetus: early stage of benign external hydrocephalus? Childs Nerv Syst 17:239–245PubMedCrossRefGoogle Scholar
  107. Girard N, Gire C, Sigaudy S et al (2003) MR imaging of acquired fetal brain disorders. Childs Nerv Syst 19:490–500PubMedCrossRefGoogle Scholar
  108. Gömöri É, Pál J, Ábrahám H et al (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci 24:295–305PubMedCrossRefGoogle Scholar
  109. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165PubMedGoogle Scholar
  110. Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of the intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol 34:321–328PubMedCrossRefPubMedCentralGoogle Scholar
  111. Griscom NT (1970) The contracting skull. Inward growth of the inner table as a physiologic response to diminution of intracranial content in children. Am Roentgenol Radium Ther Nucl Med 110:106–110CrossRefGoogle Scholar
  112. Guerra MM, González C, Caprile T et al (2015) Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neuroosci 9:480Google Scholar
  113. Guirao B, Meunier A, Mortaud S et al (2010) Coupling between hemodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  114. Guzzetta A, D’Acunto G, Rose S et al (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52:891–900PubMedCrossRefPubMedCentralGoogle Scholar
  115. Hallaert GG, Vanhauwaert DJ, Logghe K et al (2012) Endoscopic coagulation of choroid plexus hyperplasia. J Neurosurg Pediatr 9:169–177PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hamilton R, Baldwin K, Fuller J et al (2012) Intracranial pressure waveform correlates with aqueductal cerebrospinal fluid stroke volume. J Appl Physiol 113:1560–1566PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hirai O, Handa H, Ishikawa M (1984) Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg Neurol 21:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  118. Hirano H, Hirahara K, Asakura T et al (1994) Hydrocephalus due to villous hypertrophy of the choroid plexus in the lateral ventricles. J Neurosurg 80:321–323PubMedCrossRefPubMedCentralGoogle Scholar
  119. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through, and out of the brain: evaluation of the evidence. Fluids Barr CNS 11:26CrossRefGoogle Scholar
  120. Hu X, Glenn T, Scalzo F et al (2010) Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas 31:679–695PubMedPubMedCentralCrossRefGoogle Scholar
  121. Hugare J, Rönning O (1995) Growth of the cranial vault: influence of intracranial and extracranial pressures. Acta Odontol Scand 53:192–195CrossRefGoogle Scholar
  122. Huh MS, Todd MA, Picketts DJ (2009) SCO-ping out of the mechanisms underlying the etiology of hydrocephalus. Physiology 24:117–126PubMedCrossRefGoogle Scholar
  123. Illif JJ, Wang M, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199CrossRefGoogle Scholar
  124. Ipsikioglu AC, Bek S, Gökduman A et al (2006) Diffuse villous hyperplasia of choroid plexus. Acta Neurochir 148:691–694CrossRefGoogle Scholar
  125. Iskandar BJ, Sansone JM, Medow J, Rowley HA (2004) The use of quick-brain magnetic resonance imaging in the evaluation of shunt-treated hydrocephalus. J Neurosurg Pediatr 101:147–151CrossRefGoogle Scholar
  126. Jeng S, Gupta N, Wrensch M et al (2011) Prevalence of congenital hydrocephalus in California 1991–2000. Pediatr Neurol 45:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  127. Jimenez AJ, Dominguez-Pinos MD, Guerra MM et al (2014) Structure and function of the ependymal barrier and diseases associated with ependymal disruption. Tissue Barriers 2:228426CrossRefGoogle Scholar
  128. Johanson CE, Duncan JA, Klinge P et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  129. Johansson PA (2014) The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci 8:340PubMedPubMedCentralCrossRefGoogle Scholar
  130. Johansson PA, Dziegielewska KM, Ek CJ et al (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:353–364PubMedCrossRefPubMedCentralGoogle Scholar
  131. Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2PubMedPubMedCentralCrossRefGoogle Scholar
  132. Johnston M, Armstrong D, Koh L (2007) Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 4:3PubMedPubMedCentralCrossRefGoogle Scholar
  133. Kao SCS, Waziri MH, Smith WL et al (1989) MR imaging of the craniovertebral junction, cranium, and brain in children with achondroplasia. Am J Roentgenol 153:69–75CrossRefGoogle Scholar
  134. Kehrer M, Blumenstock G, Ehehalt S et al (2005) Development of the cerebral blood flow volume in preterm neonates during the first two weeks of life. Pediatr Res 58:927–930PubMedCrossRefPubMedCentralGoogle Scholar
  135. Kendall B, Holland I (1981) Benign communicating hydrocephalus in children. Neuroradiology 21:93–96PubMedCrossRefGoogle Scholar
  136. Klarica M, Orešković D, Božić B et al (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158:1397–1405PubMedCrossRefGoogle Scholar
  137. Klosovskii BN (1963) The development of the brain and its disturbance by harmful factors. Pergamon Press, LondonGoogle Scholar
  138. Kostovic I, Judas M, Rados M, Hradac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544PubMedCrossRefGoogle Scholar
  139. Lam S, Harris D, Rocque BG, Ham SA (2014) Pediatric endoscopic third ventriculostomy: a population-based study. J Neurosurg Pediatr 14:455–464PubMedCrossRefPubMedCentralGoogle Scholar
  140. Larsson A, Moonen M, Bergh AC et al (1990) Predictive value of quantitative cisternography in normal pressure hydrocephalus. Acta Neurol Scand 81:327–332PubMedCrossRefPubMedCentralGoogle Scholar
  141. Laurence KM (1979) The biology of choroid plexus papilloma in infancy and childhood. Acta Neurochir 50:79–90PubMedCrossRefPubMedCentralGoogle Scholar
  142. Laye MR, Moore BC, Bufkin LK et al (2009) Fetal macrocrania: diagnosis, delivery and outcomes. J Perinatol 29:201–204PubMedCrossRefPubMedCentralGoogle Scholar
  143. Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91:1117–1132PubMedCrossRefPubMedCentralGoogle Scholar
  144. Lee KS, Bae WK, Bae HG, Yun IG (2000) The fate of traumatic subdural hygroma in serial computed tomographic scans. J Korean Med Sci 15:560–568PubMedPubMedCentralCrossRefGoogle Scholar
  145. Leliefeld PH, Gooskens RHJM, Vincken KM et al (2008) Magnetic resonance imaging for quantitative flow measurements in infants with hydrocephalus: a prospective study. J Neurosurg Pediatr 2:163–170PubMedCrossRefPubMedCentralGoogle Scholar
  146. Liliequist B (1959) The subarachnoid cisterns. An anatomic and roentgenologic study. Acta Radiol Suppl 185:1–108PubMedPubMedCentralGoogle Scholar
  147. Ling EA, Kaur C, Lu J (1998) Origin nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41:43–56PubMedCrossRefPubMedCentralGoogle Scholar
  148. Linninger AA, Tsakiris C, Zhu DC et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng 52(4):557–565PubMedCrossRefPubMedCentralGoogle Scholar
  149. Linscott LL, Osborn AG, Blaser S et al (2008) Pilomyxoid astrocytoma: expanding the imaging spectrum. Am J Neuroradiol 29:1861–1866PubMedCrossRefPubMedCentralGoogle Scholar
  150. Longatti P, Basaldella L, Orvieto E et al (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233PubMedCrossRefPubMedCentralGoogle Scholar
  151. Longatti P, Fiorindi A, Perin A et al (2007) Endoscopic anatomy of the cerebral aqueduct. Neurosurgery 61(suppl.1):1–7PubMedPubMedCentralGoogle Scholar
  152. Luciano MG, Skarupa DJ, Booth AM et al (2001) Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metabol 21:285–294CrossRefGoogle Scholar
  153. Lüdemann W, Berens von Rautenfeld D, Samii M, Brinker T (2005) Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst 21:96–103PubMedCrossRefPubMedCentralGoogle Scholar
  154. Lüders E, Steinmetz H, Jäcke L (2002) Brain size and grey matter volume in the healthy human brain. Neuroreport 13:2371–2374PubMedCrossRefPubMedCentralGoogle Scholar
  155. Luetmer PH, Huston J, Friedman J et al (2002) Measurement of the cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50:534–543PubMedPubMedCentralGoogle Scholar
  156. Lun MP, Monuki ES, Lehtinen MK (2015a) Development and functions of the choroid plexus – cerebrospinal fluid system. Nat Rev Neurosci 16:445–457PubMedPubMedCentralCrossRefGoogle Scholar
  157. Lun MP, Johnson MB, Watanabe M (2015b) Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 35:4903–4916PubMedPubMedCentralCrossRefGoogle Scholar
  158. MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of Aquaporins and co-transporters. Neuroscience 168:941–956PubMedCrossRefPubMedCentralGoogle Scholar
  159. Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183PubMedCrossRefPubMedCentralGoogle Scholar
  160. Marin-Padilla M (2012) The human brain intracerebral microvascular system: development and structure. Front Neuroanat 6:38PubMedPubMedCentralCrossRefGoogle Scholar
  161. Matson DD, Crofton FDL (1960) Papilloma of the choroid plexus in childhood. J Neurosurg 17:1002–1027PubMedCrossRefPubMedCentralGoogle Scholar
  162. McAllister JP (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fet Neonat Med 17:285–294CrossRefGoogle Scholar
  163. McKechnie L, Vasudevan C, Levene M (2012) Neonatal outcome of congenital ventriculomegaly. Semin Fetal Neonatal Med 17:301–307PubMedCrossRefPubMedCentralGoogle Scholar
  164. McLone DG (1980) The subarachnoid space: a review. Childs Brain 6:113–130PubMedPubMedCentralGoogle Scholar
  165. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  166. Milhorat TH (1992) Classification of cerebral edemas with reference to hydrocephalus and pseudotumor cerebri. Childs Nerv Syst 8:301–306PubMedCrossRefGoogle Scholar
  167. Miller E, Widjaja E, Blaser S et al (2008) The old and the new: supratentorial MR findings in Chiari II malformations. Childs Nerv Syst 24:563–575PubMedCrossRefPubMedCentralGoogle Scholar
  168. Muňoz A, Hinojosa J, Esparza J (2007) Cisternography and ventriculography gadopentetate dimeglumine-enhanced MR imaging in pediatric patients: preliminary report. AJNR Am J Neuroradiol 28:889–894PubMedGoogle Scholar
  169. Nimjee S, Powers CJ, McLendon RE et al (2010) Single-stage bilateral choroid plexectomy for choroid plexus papilloma in a patient presenting with high cerebrospinal fluid output. J Neurosurg Pediatr 5:342–345PubMedCrossRefGoogle Scholar
  170. Nomura ML, Barini R, De Andrade KC et al (2010) Congenital hydrocephalus: gestational and neonatal outcome. Arch Gynecol Obstet 282:607–614PubMedCrossRefGoogle Scholar
  171. O’Connell JEA (1943) The vascular factor in intracranial pressure and the maintenance of the cerebrospinal fluid circulation. Brain 66:204–228CrossRefGoogle Scholar
  172. O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608PubMedCrossRefGoogle Scholar
  173. Oi S, Inagaki T, Shinoda M et al (2011) Guideline for management and treatment of fetal and congenital hydrocephalus: center of excellence – fetal and congenital hydrocephalus top 10 Japan guideline 2011. Childs Nerv Syst 27:1563–1570PubMedCrossRefPubMedCentralGoogle Scholar
  174. Orešković D, Klarica M, Vukic M (2001) Does the secretion and circulation of the cerebrospinal fluid really exist? Med Hypotheses 56:622–624PubMedCrossRefPubMedCentralGoogle Scholar
  175. ORPHA59315 Rhombencephalosynapsis (2006).
  176. Ortega E, Muňoz RI, Luza N et al (2016) The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: case report. BMC Neurol 16:45PubMedPubMedCentralCrossRefGoogle Scholar
  177. Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6:26–38PubMedGoogle Scholar
  178. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277PubMedPubMedCentralCrossRefGoogle Scholar
  179. Papaiconomou C, Zakharov A, Azizi N et al (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20:29–36PubMedCrossRefGoogle Scholar
  180. Park EH, Eide PK, Zurakowski D, Madsen JR (2012) Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus. J Neurosurg 117:1189–1196PubMedCrossRefGoogle Scholar
  181. Pasquier L, Marcorelles P, Loget P et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117:185–200PubMedCrossRefGoogle Scholar
  182. Passi GR, Bhatnagar S (2015) Rhombencephalosynapsis. Pediatr Neurol 52:551–652CrossRefGoogle Scholar
  183. Paulsen AH, Lundar T, Lindegaard KF (2015) Pediatric hydrocephalus: 40 year outcomes in 128 hydrocephalic patients treated with shunts during childhood. Assessment of surgical outcome, work participation, and health-related quality of life. J Neurosurg Pediatr 16:633–641PubMedCrossRefGoogle Scholar
  184. Pellicer A, Valverde E, Gayá F et al (2001) Postnatal adaptation of brain circulation in preterm infants. Pediatr Neurol 24:103–109PubMedCrossRefGoogle Scholar
  185. Penn RD, Basati S, Sweetman B et al (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115:159–164PubMedCrossRefGoogle Scholar
  186. Pennybacker J, Russel DS (1943) Spontaneous ventricular rupture in hydrocephalus with subtentorial cyst formation. J Neurol Psychiatry 6:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pettorossi VE, Di Rocco C, Caldarelli M et al (1978a) Influences of phasic changes in systemic blood pressure on intracranial pressure. Eur Neurol 17:216–225PubMedCrossRefGoogle Scholar
  188. Pettorossi VE, Di Rocco C, Mancinelli et al (1978b) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59:30–39PubMedCrossRefGoogle Scholar
  189. Philips MF, Shanno G, Duhaime AC (1998) Treatment of villous hypertrophy of the choroid plexus by endoscopic contact coagulation. Pediatr Neurosurg 28:252–256PubMedCrossRefGoogle Scholar
  190. Pierga JY, Kalifa C, Terrier-Lacombe MJ et al (1993) Carcinoma of the choroid plexus: a pediatric experience. Med Ped Oncol 21:480–487CrossRefGoogle Scholar
  191. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9PubMedPubMedCentralCrossRefGoogle Scholar
  192. Pollock H, Hutchings M, Weller RO, Zhang ET (1997) Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 91:337–346CrossRefGoogle Scholar
  193. Prayer D, Brugger PC, Prayer L (2004) Fetal MRI: techniques and protocols. Pediatr Radiol 34:685–693PubMedCrossRefGoogle Scholar
  194. Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:10CrossRefGoogle Scholar
  195. Purin VR (1963) The importance of the cerebrospinal fluid system to the developing brain. In: Klosovskii BN (ed) The development of the brain and its disturbance by harmful factors. Pergamon Press, London, pp 83–95Google Scholar
  196. Rash JE, Yasamura T, Hudson CS et al (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986PubMedCrossRefGoogle Scholar
  197. Raybaud C (2010) Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am 21:399–426PubMedCrossRefGoogle Scholar
  198. Raybaud C (2016) MR assessment of pediatric hydrocephalus: a roadmap. Childs Nerv Syst 32:19–41PubMedCrossRefGoogle Scholar
  199. Raybaud C, Ahmad T, Rastegar et al (2013) The premature brain: developmental and lesional anatomy. Neuroradiology 55(Suppl 2):S23–S40CrossRefGoogle Scholar
  200. Redzic ZB, Preston JE, Duncan JA et al (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Cur Top Dev Biol 71:1–52CrossRefGoogle Scholar
  201. Rekate HL (1993) Classification of slit-ventricle syndrome using intracranial pressure monitoring. Pediatr Neurosurg 19:15–20PubMedCrossRefGoogle Scholar
  202. Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 27:1535–1541PubMedPubMedCentralCrossRefGoogle Scholar
  203. Rekate HL, Erwood S, Brodkey JA et al (1985–1986) Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci 12:196–201PubMedCrossRefGoogle Scholar
  204. Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2:1–11PubMedCrossRefGoogle Scholar
  205. Roales-Buján R, Páez P, Guerra M et al (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546PubMedPubMedCentralCrossRefGoogle Scholar
  206. Robinson S (2012) Neonatal post hemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. A review. J Neurosurg Pediatr 9:242–258PubMedCrossRefGoogle Scholar
  207. Rodriguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Techn 52:573–590CrossRefGoogle Scholar
  208. Rodriguez EM, Guerra MM, Vio K et al (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–241PubMedCrossRefGoogle Scholar
  209. Rosman NP, Shands KN (1978) Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol 3:445–450PubMedCrossRefGoogle Scholar
  210. Rovira A, Capellades J, Grivé E et al (1999) Spontaneous ventriculostomy: report of three cases revealed by flow-sensitive phase-contrast cine MR imaging. Am J Neuroradiol 20:1647–1652PubMedGoogle Scholar
  211. Russell DS (1949) Observations on the pathology of hydrocephalus. His Majesty’s Stationery Office, LondonGoogle Scholar
  212. Saehle T, Eide PK (2015) Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single center experience over 10 years in 146 patients. J Neurosurg 122:1076–1086PubMedCrossRefGoogle Scholar
  213. Sainte-Rose C, Lacombe J, Pierre-Kahn A et al (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736PubMedCrossRefGoogle Scholar
  214. San Millán D, Gailloud P, Rüfenacht DA et al (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23:1500–1508Google Scholar
  215. Shirane R, Sato S, Sato K et al (1992) Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8:118–123PubMedCrossRefGoogle Scholar
  216. Singhal A, Yang MMH, Sargent MA, Cochrane DD (2013) Does optic nerve sheath diameter on MRI decrease with clinically improved hydrocephalus? Childs Nerv Syst 29:269–274PubMedCrossRefGoogle Scholar
  217. Sival DA, Guerra M, den Dunnen WFA et al (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179PubMedCrossRefGoogle Scholar
  218. Siyahhan B, Knobloch V, de Zélicourt D et al (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11:20131189PubMedPubMedCentralCrossRefGoogle Scholar
  219. Smith ZA, Moftakhar P, Malkasian D et al (2007) Choroid plexus hyperplasia: surgical treatment and immunohistochemical results. J Neurosurg 107(3 Suppl Pediatrics):255–262PubMedGoogle Scholar
  220. St George E, Natarajan K, Sgouros S (2004) Changes in ventricular volume in hydrocephalic children following successful endoscopic third ventriculostomy. Childs Nerv Syst 20:834–848PubMedCrossRefGoogle Scholar
  221. Staudt M (2010) Reorganization after pre- and perinatal brain lesions. J Anat 217:469–474PubMedPubMedCentralCrossRefGoogle Scholar
  222. Staudt M, Braun C, Gerloff C et al (2006) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67:522–525PubMedCrossRefGoogle Scholar
  223. Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–773PubMedCrossRefGoogle Scholar
  224. Strik C, Klose U, Erb M et al (2002) Intracranial oscillations of cerebrospinal fluid and blood flow: analysis with magnetic resonance imaging. J Magn Res Imag 15:251–258CrossRefGoogle Scholar
  225. Stroobandt G, Thauvoy C, Gilliard C et al (1988) Papilloma of the choroid plexus of the lateral ventricle without generalized hydrocephalus. [in French]. Neurochirurgie 34:128–132PubMedGoogle Scholar
  226. Tamburrini G, Caldarelli M, Di Rocco F et al (2006) The role of endoscopic choroid plexus coagulation in the surgical management of bilateral choroid plexus hyperplasia. Childs Nerv Syst 22:605–608PubMedCrossRefGoogle Scholar
  227. Taylor W, Hayward R, Lasjaunias P et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385PubMedCrossRefGoogle Scholar
  228. Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206PubMedPubMedCentralCrossRefGoogle Scholar
  229. Tsitouras V, Sgouros S (2011) Infantile posthemorrhagic hydrocephalus. Childs Nerv Syst 27: 1595–1608PubMedCrossRefGoogle Scholar
  230. Tuli S, O’Hayon B, Drake J et al (1999) Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery 45:1329–1335PubMedCrossRefPubMedCentralGoogle Scholar
  231. Tulipan N, Sutton LN, Bruner JP et al (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt-dependent hydrocephalus. Pediatr Neurosurg 38:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  232. Turnbull I, Drake C (1966) Membranous occlusion of the aqueduct of Sylvius. J Neurosurg 24:24–33CrossRefGoogle Scholar
  233. Van Landingham M, Nguyen TV, Roberts A et al (2009) Risk factors of congenital hydrocephalus: a 10 year retrospective study. J Neurol Neurosurg Psychiatry 80:213–217PubMedCrossRefPubMedCentralGoogle Scholar
  234. Vinchon M, Baroncini M, Delestret I (2012) Adult outcome of pediatric hydrocephalus. Childs Nerv Syst 28:847–854PubMedPubMedCentralCrossRefGoogle Scholar
  235. Virhammar J, Laurell K, Ahlgren A et al (2014) Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 34:1771–1778PubMedPubMedCentralCrossRefGoogle Scholar
  236. Volpe JJ (2001) Neurology of the newborn, 4th edn. Saunders, PhiladelphiaGoogle Scholar
  237. Wagner C, Batiz LF, Rodriguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040PubMedCrossRefPubMedCentralGoogle Scholar
  238. Wagshul ME, Chen JJ, Egnor MR et al (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104:810–819PubMedCrossRefPubMedCentralGoogle Scholar
  239. Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8:5PubMedPubMedCentralCrossRefGoogle Scholar
  240. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651PubMedPubMedCentralCrossRefGoogle Scholar
  241. Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103(Suppl 6 Pediatrics):475–481PubMedGoogle Scholar
  242. Warren DT, Hendson G, Cochrane DD (2009) Bilateral choroid plexus hyperplasia: a case report and management strategies. Childs Nerv Syst 25:1617–1622PubMedCrossRefGoogle Scholar
  243. Welch K, Strand R, Bresnan M, Cavazzuti V (1983) Congenital hydrocephalus due to villous hypertrophy of the telencephalic choroid plexuses. J Neurosurg 59:172–175PubMedCrossRefGoogle Scholar
  244. Worthington WC, Cathcart RS (1966) Ciliary currents on ependymal surfaces. Ann N Y Acad Sci 130:944–950PubMedCrossRefPubMedCentralGoogle Scholar
  245. Xenos C, Sgouros S, Natarajan K (2002) Ventricular volume change in childhood. J Neurosurg 97:584–590PubMedCrossRefPubMedCentralGoogle Scholar
  246. Yamada S, Miyazaki M, Kanazawa H et al (2008) Visualization of the cerebrospinal fluid movement with spin labeling at MR imaging. Preliminary results in normal and pathophysiologic conditions. Radiology 249(2):644–652PubMedCrossRefPubMedCentralGoogle Scholar
  247. Yamasaki M, Thompson P, Lemmon V (1997) CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 28:175–178PubMedPubMedCentralCrossRefGoogle Scholar
  248. Yamasaki M, Nonaka M, Bamba Y et al (2012) Diagnosis, treatment and long-term outcomes of fetal hydrocephalus. Semin Fet Neonat Med 17:330–335CrossRefGoogle Scholar
  249. Yasuda T, Tomita T, McLone DG, Donovan M (2002) Measurements of cerebrospinal fluid output through external ventricular drainage in one hundred infants and children: correlation with cerebrospinal fluid production. Pediatr Neurosurg 36:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  250. Yeom KW, Lober RM, Alexander A et al (2014) Hydrocephalus decreases arterial spin-labeled cerebral perfusion. AJNR Am J Neuroradiol 35:1433–1439PubMedCrossRefPubMedCentralGoogle Scholar
  251. Zahl SM, Egge A, Helseth E, Wester K (2011) Benign external hydrocephalus: a review, with emphasis on management. Neurosurg Rev 34:417–432PubMedPubMedCentralCrossRefGoogle Scholar
  252. Zhang ET, Inman CBE, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123PubMedPubMedCentralGoogle Scholar
  253. Zhu XL, Di Rocco C (2013) Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Childs Nerv Syst 29:35–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuroradiology, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations