Rhamnolipids: Production, Performance, and Application

Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


A circular bioeconomy requires the use of renewable resources to produce high-value specialty chemicals or pharmaceuticals, and also fine and bulk chemicals. Here, the surfactant market represents an ideal test case, because surfactants can cover diverse product classes ranging from fine to bulk chemicals and thus including large differences in purity and price. Biosurfactants produced by microbes from renewable resources are discussed for decades, and recently, sophorolipids arrived in the market, produced by fermentation of high-performing production strains and combined with simple product purification thus reaching low product prices.

Here, we review the current status of rhamnolipid research and applications. Molecular diversity of rhamnolipids and biochemical pathways involved in their synthesis are presented, and physicochemical parameters governing emulsification, foaming, and other properties of rhamnolipids are summarized, followed by applications in many different industries including the agro and pharma industry. We finish with a patent survey that covers rhamnolipid production and potential applications of these biosurfactants. We also tried to identify knowledge gaps that might limit a more rapid establishment of rhamnolipids in the markets.


Hydroxy Fatty Acid Emulsification Activity Patent Family Rhamnolipid Production Oily Sludge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Deutsche Bundesstiftung Umwelt (DBU) is gratefully acknowledged for providing financial support.

This work was partially funded by the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB), which is funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities.

The scientific activities of the Bioeconomy Science Center were financially supported by the Ministry of Innovation, Science, and Research within the framework of the NRW Strategieprojekt BioSC (No. 313/323-400-002 13).

The authors have received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 633962 for the project P4SB.


  1. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abdel-Mawgoud AM, Hausmann R, Lepine F, Müller MM, Deziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberon-Chavez G (ed) Biosurfactants, vol 20. Springer-Verlag, Berlin/Heidelberg, pp 13–55CrossRefGoogle Scholar
  4. Abdel-Mawgoud AM, Lepine F, Deziel E (2014) A stereospecific pathway diverts beta-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164PubMedCrossRefGoogle Scholar
  5. Andrä J, Rademann J, Howe J, Koch MH, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310PubMedCrossRefGoogle Scholar
  6. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508PubMedCrossRefGoogle Scholar
  7. Barigou M, Deshpande NS, Wiggers FN (2001) An enhanced electrical resistance technique for foam drainage measurement. Colloid Surf A 189:237–246CrossRefGoogle Scholar
  8. Bauer J, Brandenburg K, Zahringer U, Rademann J (2006) Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chem-Eur J 12:7116–7124PubMedCrossRefGoogle Scholar
  9. Behrens B, Engelen J, Tiso T, Blank LM, Hayen H (2016a) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408:2505–2514PubMedCrossRefGoogle Scholar
  10. Behrens B, Helmer PO, Tiso T, Blank LM, Hayen H (2016b) Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J Chromatogr A 1465:90–97PubMedCrossRefGoogle Scholar
  11. Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H (2016c) High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J Chromatogr A 1455:125–132PubMedCrossRefGoogle Scholar
  12. Beuker J, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016a) Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor. AMB Express 6:11PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016b) High titer heterologous rhamnolipid production. AMB Express 6:124PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bikerman JJ (1973) Foams. Springer, BerlinCrossRefGoogle Scholar
  15. Blank L, Rosenau F, Wilhelm S, Wittgens A, Tiso T (2013a) Means and methods for rhamnolipid production. WO 2013/041670 A1, HHU Düsseldorf University, TU Dortmund UniversityGoogle Scholar
  16. Blank LM, Küpper B, del Amor Villa EM, Wichmann R, Nowacki C (2013b) Foam adsorption. WO 2013/087674 A1, TU Dortmund UniversityGoogle Scholar
  17. Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82PubMedCrossRefGoogle Scholar
  18. Bornkessel S, Bröring S, Omta SWF (2014) Analysing indicators of industry convergence in four probiotics innovation value chains. JCNS 14:213–229Google Scholar
  19. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418CrossRefGoogle Scholar
  20. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602PubMedGoogle Scholar
  21. Burger M, Glaser L, Burton R (1966) Formation of rhamnolipids of Pseudomonas aeruginosa. In: Galluzzi L, Pedro JMB-S, Kroemer G (eds) Methods in enzymology, vol 588. Elsevier Inc., Cambridge/San Diego/Oxford/London, pp 441–445Google Scholar
  22. Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28:2783–2790PubMedCrossRefGoogle Scholar
  23. Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199PubMedCrossRefGoogle Scholar
  24. Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929PubMedCrossRefGoogle Scholar
  25. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229PubMedPubMedCentralGoogle Scholar
  26. Costa SGVAO, Nitschke M, Lepine F, Deziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem 45:1511–1516CrossRefGoogle Scholar
  27. Costa SG, Deziel E, Lepine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627PubMedCrossRefGoogle Scholar
  28. Curran C-S, Bröring S, Leker J (2010) Anticipating converging industries using publicly available data. Technol Forecase Soc 77:385–395CrossRefGoogle Scholar
  29. Dahrazma B, Mulligan CN, Nieh MP (2008) Effects of additives on the structure of rhamnolipid (biosurfactant): a small-angle neutron scattering (SANS) study. J Colloid Interface Sci 319:590–593PubMedCrossRefGoogle Scholar
  30. Deepika KV, Ramu Sridhar P, Bramhachari PV (2015) Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal Agric Biotechnol 4:608–615Google Scholar
  31. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  32. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252PubMedCrossRefGoogle Scholar
  33. Díaz De Rienzo MA, Kamalanathan ID, Martin PJ (2016) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem 5:820–827CrossRefGoogle Scholar
  34. Dobler L, Vilela LF, Almeida RV, Neves BC (2015) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135CrossRefGoogle Scholar
  35. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. JCE 74:1227–1231CrossRefGoogle Scholar
  36. Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27:645–654PubMedCrossRefGoogle Scholar
  38. Dwivedi D, Jansen R, Molinari G, Nimtz M, Johri BN, Wray V (2008) Antimycobacterial serratamolides and diacyl peptoglucosamine derivatives from Serratia sp. J Nat Prod 71:637–641PubMedCrossRefGoogle Scholar
  39. El Zeftawy MAM, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Sep Purif Technol 77:120–127CrossRefGoogle Scholar
  40. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol 36:26–36CrossRefGoogle Scholar
  41. Fracchia L, Ceresa C, Franzetti A, Cavallo M, Gandolfi I, Hamme JV, Gkorezis P, Marchant R, Banat IM (2014) In: Kosaric N, Sukan FV (eds) Industrial applications of biosurfactants. CRC Press Taylor & Francis Group, Boca Raton, pp 245–268Google Scholar
  42. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gautam KK, Tyagi VK (2006) Microbial surfactants: a review. J Oleo Sci 55:155–166CrossRefGoogle Scholar
  44. Gehring C, Wessel M, Schaffer S, Thum O (2016) The power of biocatalysis: a one-pot total synthesis of rhamnolipids from butane as the sole carbon and energy source. ChemistryOpen 5:513–516PubMedPubMedCentralCrossRefGoogle Scholar
  45. Giani C, Wullbrandt D, Rothert R, Meiwes J (1995). Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose, US5501966: Hoechst AktiengesellschaftGoogle Scholar
  46. Gogoi D, Bhagowati P, Gogoi P, Bordoloi NK, Rafay B, Dolui SK, Mukherjee AK (2016) Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 6:70669–70681CrossRefGoogle Scholar
  47. Gran View Research (2015) Biosurfactants market analysis by product and segment forecast to 2020. Accessed Feb 2017
  48. Griffin WC (1949) Classification of surface-active agents by “HLB”. J Soc Cosmet Chem 1:311–326Google Scholar
  49. Griffin WC (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:249–256Google Scholar
  50. Grosso-Becerra M-V, González-Valdez A, Granados-Martínez M-J, Morales E, Servín-González L, Méndez J-L, Delgado G, Morales-Espinosa R, Ponce-Soto G-Y, Cocotl-Yañez M, Soberón-Chávez G (2016) Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 10:9995–10004CrossRefGoogle Scholar
  51. Gudiña EJ, Rodrigues AI, Alves E, Rosario Domingues M, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93PubMedCrossRefGoogle Scholar
  52. Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150PubMedCrossRefGoogle Scholar
  53. Gunther NW, Nuñez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293PubMedPubMedCentralCrossRefGoogle Scholar
  54. Guo YP, Hu YY, Gu RR, Lin H (2009) Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J Colloid Interface Sci 331:356–363PubMedCrossRefGoogle Scholar
  55. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81:316–322PubMedCrossRefGoogle Scholar
  56. Haferburg D, Hommel R, Kleber HP, Kluge S, Schuster G, Zschiegner HJ (1987) Antiphytovirale Aktivität von Rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnol 7:353–356CrossRefGoogle Scholar
  57. Hall BH, Jaffe A, Trajtenberg M (2005) Market value and patent citations. Rand J Econ 36:16–38Google Scholar
  58. Harvey S, Elashvili I, Valdes JJ, Kamely D, Chakrabarty AM (1990) Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology 8:228–230PubMedCrossRefGoogle Scholar
  59. Hirayama T, Kato I (1982) Novel methyl rhamnolipids from Pseudomonas aeruginosa. FEBS Lett 139:81–85CrossRefGoogle Scholar
  60. Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112:674–680CrossRefGoogle Scholar
  61. Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Rezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516PubMedCrossRefGoogle Scholar
  62. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Sir M, Cejkova A, Masák J, Jirku V, Rezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 10:45–51CrossRefGoogle Scholar
  63. Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10:285–291CrossRefGoogle Scholar
  64. Ishigami Y, Suzuki S (1997) Development of biochemicals – functionalization of biosurfactants and natural dyes. Prog Org Coat 31:51–61CrossRefGoogle Scholar
  65. Ito S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J Antibiot 24:855–859PubMedCrossRefGoogle Scholar
  66. Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:1–12CrossRefGoogle Scholar
  67. Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  68. Johann S, Seiler TB, Tiso T, Bluhm K, Blank LM, Hollert H (2016) Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci Total Environ 548–549:155–163PubMedCrossRefGoogle Scholar
  69. Kachholz T, Schlingmann M (1987) Possible food and agricultural application of microbial surfactants: an assessment. In: Kosaric N, Cairns WL, NCC G (eds) Biosurfactants and biotechnology, vol 25. Marcel Decker, New York, pp 183–208Google Scholar
  70. Khaje Bafghi M, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg 15:679–684CrossRefGoogle Scholar
  71. Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938PubMedCrossRefGoogle Scholar
  72. Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J (2016) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 36:399–415PubMedGoogle Scholar
  73. Klekner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants: production, properties, applications, vol 48. Dekker, New York, pp 373–389Google Scholar
  74. Koehler SA, Hilgenfeldt S, Weeks ER, Stone HA (2004) Foam drainage on the microscale – II. Imaging flow through single plateau borders. J Colloid Interface Sci 276:439–449PubMedCrossRefGoogle Scholar
  75. Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechol 39:295–304Google Scholar
  76. Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556PubMedCrossRefGoogle Scholar
  77. Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2013) Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int Biodeterior Biodegrad 81:133–140CrossRefGoogle Scholar
  78. Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212PubMedPubMedCentralGoogle Scholar
  79. Küpper B, Mause A, Halka L, Imhoff A, Nowacki C, Wichmann R (2013) Fermentative Produktion von Monorhamnolipiden im Pilotmaßstab – Herausforderungen der Maßstabsvergrößerung. Chem Ing Tech 85:834–840CrossRefGoogle Scholar
  80. Kuppert D, Kottke U, Lattich J, Volk M, Wenk H, Cabirol F, Schilling M, Schaffer S, Allef P (2014) Detergent composition for textiles comprising rhamnolipids having a predominant share of di-rhamnolipids. US2014296125, EvonikGoogle Scholar
  81. Lang S, Trowitzsch-Kienast W (2002) Biotenside. Vieweg+ Teubner Verlag, Stuttgart/Leipzig/WiesbadenCrossRefGoogle Scholar
  82. Lang S, Wullbrandt D (1999) Rhamnose lipids – biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32PubMedCrossRefGoogle Scholar
  83. Lee M, Kim MK, Vancanneyt M, Swings J, Kim SH, Kang MS, Lee ST (2005) Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413PubMedCrossRefGoogle Scholar
  84. Leitermann F, Walter V, Syldatk C, Hausmann R (2010) Rhamnolipids. Springer, Berlin/Heidelberg, pp 3037–3051Google Scholar
  85. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368PubMedCrossRefGoogle Scholar
  86. Liu H, Shao B, Long X, Yao Y, Meng Q (2016) Foliar penetration enhanced by biosurfactant rhamnolipid. Colloids Surf B Biointerfaces 145:548–554PubMedCrossRefGoogle Scholar
  87. Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214PubMedPubMedCentralCrossRefGoogle Scholar
  88. Long XW, Zhang GL, Han L, Meng Q (2013) Dewatering of floated oily sludge by treatment with rhamnolipid. Water Res 47:4303–4311PubMedCrossRefGoogle Scholar
  89. Long XW, Sha RY, Meng Q, Zhang GL (2016) Mechanism study on the severe foaming of rhamnolipid in fermentation. J Surfactant Deterg 19:833–840CrossRefGoogle Scholar
  90. Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci 31:255–261PubMedCrossRefGoogle Scholar
  91. Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33:1715–1726PubMedCrossRefGoogle Scholar
  92. Lunkenheimer K, Malysa K, Winsel K, Geggel K, Siegel S (2010) Novel method and parameters for testing and characterization of foam stability. Langmuir 26:3883–3888PubMedCrossRefGoogle Scholar
  93. Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L, Ma Y-L (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotech 6:144–151Google Scholar
  94. Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142CrossRefGoogle Scholar
  95. Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633PubMedCrossRefGoogle Scholar
  96. Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52CrossRefGoogle Scholar
  97. Manso Pajarron A, de Koster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj J 10:219–226PubMedCrossRefGoogle Scholar
  98. Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605PubMedCrossRefGoogle Scholar
  99. Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565PubMedCrossRefGoogle Scholar
  100. Marchant R, Funston S, Uzoigwe C, Rahman PKSM, Banat IM (2014) Production of biosurfactants from nonpathogenic bacteria. In: Kosaric N, Sukan FV (eds) Biosurfactants. CRC Press Boca Raton, London/New York, pp 73–81Google Scholar
  101. Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13:159PubMedPubMedCentralCrossRefGoogle Scholar
  102. Meyer-Hoffert U, Zimmermann A, Czapp M, Bartels J, Koblyakova Y, Gläser R, Schröder J-M, Gerstel U (2011) Flagellin delivery by Pseudomonas aeruginosa rhamnolipids induces the antimicrobial protein psoriasin in human skin. PLoS One 6:e16433PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mixich J, Rapp KM, Vogel M (1990). Process for producing rhamnose from rhamnolipids. WO 1992005182, Südzucker AGGoogle Scholar
  104. Moya Ramirez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, Garcia Roman M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236PubMedCrossRefGoogle Scholar
  105. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174PubMedCrossRefGoogle Scholar
  106. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids – next generation surfactants? J Biotechnol 162:366–380PubMedCrossRefGoogle Scholar
  107. Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238PubMedCrossRefGoogle Scholar
  108. Nardello W, Chailloux N, Poprawski J, Salager JL, Aubry JM (2003) HLD concept as a tool for the characterization of cosmetic hydrocarbon oils. Polym Int 52:602–609CrossRefGoogle Scholar
  109. Nguyen TTL, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504PubMedCrossRefGoogle Scholar
  110. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259CrossRefGoogle Scholar
  112. Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600PubMedCrossRefGoogle Scholar
  113. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedPubMedCentralGoogle Scholar
  114. Palanisamy P, Raichur AM (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C-Bio S 29:199–204CrossRefGoogle Scholar
  115. Parry A, Parry N, Peilow A, Stevenson P (2012). Combinations of rhamnolipids and enzymes for improved cleaning. WO2012010406, UnileverGoogle Scholar
  116. Paulino BN, Pessoa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM (2016) Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100:10265–10293PubMedCrossRefGoogle Scholar
  117. Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146PubMedCrossRefGoogle Scholar
  118. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595PubMedCrossRefGoogle Scholar
  119. Rabaron A, Cave G, Puisieux F, Seiller M (1993) Physical methods for measurement of the HLB of ether and ester nonionic surface-active agents – H-NMR and dielectric constant. Int J Pharm 99:29–36CrossRefGoogle Scholar
  120. Raiders RA, Knapp RM, McInerney MJ (1989) Microbial selective plugging and enhanced oil recovery. J Ind Microbiol 4:215–229CrossRefGoogle Scholar
  121. Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol 5:454Google Scholar
  122. Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709PubMedCrossRefGoogle Scholar
  123. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedCrossRefGoogle Scholar
  124. Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006b) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480PubMedCrossRefGoogle Scholar
  125. Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, Van de Peer Y, De Maeseneire SL, Van Bogaert IN, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503PubMedCrossRefGoogle Scholar
  126. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236PubMedCrossRefGoogle Scholar
  127. Rooney AP, Price NP, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87PubMedCrossRefGoogle Scholar
  128. Rosenberg E, Ron EZ (2013) The Prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds), Biosurfactants. vol 20. Springer, Berlin/Heidelberg, pp 281–294Google Scholar
  129. Ross J, Miles GD (1941) An apparatus for comparison of foaming properties of soaps and detergents. Oil & Soap 18:99–102CrossRefGoogle Scholar
  130. Rudin AD (1957) Measurement of the foam stability of beers. J Inst Brew 63:506–509CrossRefGoogle Scholar
  131. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sanchez M, Aranda FJ, Teruel JA, Ortiz A (2010) New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem Phys Lipids 164:16–23PubMedCrossRefGoogle Scholar
  133. Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault J-H, Clément C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160:1630–1641PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schaffer S, Wessel M, Thiessenhusen A, Stein N (2012) Cells and methods for the preparation of rhamnolipids. US9005928, EvonikGoogle Scholar
  135. Scheibenbogen K, Zytner RG, Lee H, Trevors JT (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Technol Biotechnol 59:53–59CrossRefGoogle Scholar
  136. Schenk T, Breitschwerdt A, Kessels G, Schuphan I, Schimdt B (1997) A biosynthetic route to [14C]-labelled rhamnolipids. J Labellled Compd Radiopharm 39:705–710CrossRefGoogle Scholar
  137. Schmidts T, Dobler D, Guldan AC, Paulus N, Runkel F (2010) Multiple W/O/W emulsions – using the required HLB for emulsifier evaluation. Colloids Surf A 372:48–54CrossRefGoogle Scholar
  138. Setoodeh P, Jahanmiri A, Eslamloueyan R, Niazi A, Ayatollahi SS, Aram F, Mahmoodi M, Hortamani A (2014) Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory Pseudomonas putida KT2440. Mol Biotechnol 56:175–191PubMedCrossRefGoogle Scholar
  139. Sharma A, Jansen R, Nimtz M, Johri BN, Wray V (2007a) Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. J Nat Prod 70:941–947PubMedCrossRefGoogle Scholar
  140. Sharma A, Wray V, Johri BN (2007b) Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in central Himalayan region. Arch Microbiol 187:321–335PubMedCrossRefGoogle Scholar
  141. Siemann-Herzberg M, Wagner F (1993) Prospects and limits for the production of biosurfactants using immobilized biocatalysts. In: Kosaric N (ed) Biosurfactants, vol 48. Marcel Dekker Inc., New YorkGoogle Scholar
  142. da Silva VL, Lovaglio RB, Tozzi HH, Takaki M, Contiero J (2015) Rhamnolipids: a new application in seeds development. JMBSR 1:100–106Google Scholar
  143. Singh AK, Cameotra SS (2014) Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environ Sci Pollut Res 21:2088–2097CrossRefGoogle Scholar
  144. Smith DDN, Nickzad A, Déziel E, Stavrinides J (2016) A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. mSphere 1:e00075PubMedPubMedCentralCrossRefGoogle Scholar
  145. Smyth TJP, Perfumo A, McClean S (2010) Handbook of Hydrocarbon and Lipid Microbiology. In: Timmis KN (ed) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. Springer, Berlin/Heidelberg, pp 3687–3704Google Scholar
  146. Soberón-Chávez G, Maier R (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed), Biosurfactants, vol 20. Springer, Berlin/Heidelberg, pp 1–11Google Scholar
  147. Solaiman DKY, Ashby RD, Gunther NW, Zerkowski JA (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Microbiol Biotechnol 99:4333–4342PubMedCrossRefGoogle Scholar
  148. Song Y, Sun R, Zhao K, Pan X, Zhou H, Li D (2015) An induction current method for determining the critical micelle concentration and the polarity of surfactants. Colloid Polym Sci 293:1525–1534CrossRefGoogle Scholar
  149. Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid-biosurfactant permeabilizing effects on Gram-positive and Gram-negative bacterial strains. Curr Microbiol 56:639–644PubMedCrossRefGoogle Scholar
  150. Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34PubMedCrossRefGoogle Scholar
  151. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of 4 interfacial-active rhamnolipids from Pseudomonas Spec. DSM 2874 grown on normal-alkanes. Z Naturforsch C Bio Sci 40:51–60Google Scholar
  152. Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921PubMedCrossRefGoogle Scholar
  153. Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S1:1–6Google Scholar
  154. Thies S, Santiago-Schübel B, Kovačić F, Rosenau F, Hausmann R, Jaeger K-E (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27–30PubMedCrossRefGoogle Scholar
  155. Thies S, Rausch SC, Kovacic F, Schmidt-Thaler A, Wilhelm S, Rosenau F, Daniel R, Streit W, Pietruszka J, Jaeger K-E (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:27035PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tiso T, Wierckx N, Blank LM (2014) Non-pathogenic Pseudomonas as platform for industrial biocatalysis. In: Grunwald P (ed) Industrial Biocatalysis. Pan Stanford, Singapore, pp 323–372Google Scholar
  157. Tiso T, Germer A, Küpper B, Wichmann R, Blank LM (2015) Methods for recombinant rhamnolipid production. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Humana Press, Berlin/Heidelberg, pp 1–30Google Scholar
  158. Tiso T, Sabelhaus P, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2016) Creating metabolic demand as an engineering strategy in Pseudomonas putida – rhamnolipid synthesis as an example. Metab Eng Commun 3:234–244CrossRefGoogle Scholar
  159. Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087CrossRefGoogle Scholar
  160. Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2011) Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst Appl Microbiol 34:531–535PubMedCrossRefGoogle Scholar
  161. Trippe A (2015) Guidelines for preparing patent landscape reports. Accessed Feb 2017
  162. Van Dyke MI, Lee H, Trevors JT (1991) Applications of microbial surfactants. Biotechnol Adv 9:241–252PubMedCrossRefGoogle Scholar
  163. Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078PubMedCrossRefGoogle Scholar
  164. Varjani SJ, Upasani VN (2016) Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresour Technol 221:510–516PubMedCrossRefGoogle Scholar
  165. Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5096–5109CrossRefGoogle Scholar
  166. Voget S, Knapp A, Poehlein A, Vollstedt C, Streit W, Daniel R, Jaeger K-E (2015) Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J Biotechnol 204:3–4PubMedCrossRefGoogle Scholar
  167. Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4:433–443CrossRefGoogle Scholar
  168. Wigneswaran V, Nielsen KF, Sternberg C, Jensen PR, Folkesson A, Jelsbak L (2016) Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microb Cell Factories 15:181–181CrossRefGoogle Scholar
  169. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80CrossRefGoogle Scholar
  170. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878Google Scholar
  171. Witthayapanyanon A, Harwell JH, Sabitini DA (2008) Hydrophilic-lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci 325:259–266PubMedCrossRefGoogle Scholar
  172. Yan P, Lu M, Yang Q, Zhang H-L, Zhang Z-Z, Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour Technol 116:24–28PubMedCrossRefGoogle Scholar
  173. Youssef NH, Duncan KE, McInerney MJ (2005) Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Appl Environ Microbiol 71:7690–7695PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhang Q, Ju LK (2011) Rhamnolipids as affinity foaming agent for selective collection of beta-glucosidase from cellulase enzyme mixture. Enzyme Microb Technol 48:175–180PubMedCrossRefGoogle Scholar
  175. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.iAMB – Institute of Applied MicrobiologyABBt – Aachen Biology and Biotechnology, RWTH Aachen UniversityAachenGermany
  2. 2.Institut für Molekulare EnzymtechnologieHeinrich-Heine-Universität DüsseldorfJülichGermany
  3. 3.Fraunhofer – Institute for Interfacial Engineering and BiotechnologyStuttgartGermany
  4. 4.Institute for Food and Resource Economics, Chair for Technology and Innovation Management in AgribusinessRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  5. 5.Institut für Bio- und Geowissenschaften IBG-1: BiotechnologieForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations