Advertisement

Atmospheric Biosignatures

  • John Lee Grenfell
Living reference work entry

Abstract

Life has likely coevolved with the Earth system in time in various ways. Our oxygen-rich atmosphere and the protective ozone layer are mainly the result of photosynthetic activity. Additionally, bacteria emit greenhouse gases such as methane and nitrous oxide into the atmosphere, and vegetation can emit a variety of organic molecules. In an exoplanetary context, it is important to consider whether such gas-phase species – so-called atmospheric biosignatures – could be detected spectroscopically and attributed to extraterrestrial life. Another signature of life on Earth is the so-called redox disequilibrium of its atmosphere. This refers to the presence of simultaneously oxidizing and reducing species (e.g., molecular oxygen and methane). Without life, such species would react and be removed on relatively fast timescales. Since Earth’s atmosphere has changed considerably during its history, we will also consider atmospheric biosignatures in the context of the early Earth. This chapter will present a brief literature review of atmospheric biosignatures. We will discuss the main photochemical responses of such species in the modern and early Earth’s atmosphere and their potential to act as atmospheric biosignatures in an exoplanetary context.

References

  1. Airepetian D et al (2016) Prebiotic chemistry and atmospheric warming of early earth by an active young sun. Nat Geosci 9:452–455ADSCrossRefGoogle Scholar
  2. Allen D et al (1992) Variable oxygen airglow on Venus as a probe of atmospheric dynamics. Nature 359:516–519ADSCrossRefGoogle Scholar
  3. Atreya SK et al (2007) Methane and related trace species on Mars: origin, loss, implications for life and habitability. PSS 55:358–369CrossRefGoogle Scholar
  4. Barstow J et al (2016) Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? MNRAS 461:L92–L96ADSCrossRefGoogle Scholar
  5. Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55:301–327ADSCrossRefGoogle Scholar
  6. Berner RA (2001) Modeling atmospheric O2 over Phanerozoic time. Geochem Cosm Act 65:685–694ADSCrossRefGoogle Scholar
  7. Berner RA et al (2000) Isotopic fractionation and atmospheric oxygen. Science 287:1630–1633ADSCrossRefGoogle Scholar
  8. Bousquet P et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443ADSCrossRefGoogle Scholar
  9. Bouwman AF et al (1995) Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100(2785):2800Google Scholar
  10. Brasseur G, Solomon S (eds) (2006) Aeronomy of the middle atmosphere. Springer, DordrectGoogle Scholar
  11. Buick R (2007) Did the Proterozoic ‘Canfield ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100ADSCrossRefGoogle Scholar
  12. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Plan Spa Lett 237:1–20ADSCrossRefGoogle Scholar
  13. Catling DC et al (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293:839–843ADSCrossRefGoogle Scholar
  14. Catling DC et al (2017) Exoplanet biosignatures: a framework for their assessment. Astrobiology (submitted)Google Scholar
  15. Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. Lond Edin Dub Phil Mag J Sci 10:369–383CrossRefGoogle Scholar
  16. Court RW, Sephton MA (2012) Extrasolar planets and false atmospheric biosignatures: the role of micrometeoroids. PSS 73:233–242CrossRefGoogle Scholar
  17. Crisp D et al (1996) Ground-based near-infrared observations of the Venus nightside: 1.27-μm O2 (a 1Δ g) airglow from the upper atmosphere. J Geophys Res 101:4577–4593ADSCrossRefGoogle Scholar
  18. Crutzen PJ (1970) The influence of nitrogen oxides upon the atmospheric ozone content. QJMS 96:320–325CrossRefGoogle Scholar
  19. Des Marais DJ et al (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181ADSCrossRefGoogle Scholar
  20. Domagal-Goldman S et al (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441ADSCrossRefGoogle Scholar
  21. Formisano V et al (2004) Detection of methane in the atmosphere of Mars. Nature 306:1758–1761Google Scholar
  22. Fries et al (2016) A cometary origin for Martian atmospheric methane. Geochem Persp Lett 2:10–23CrossRefGoogle Scholar
  23. Fujii Y et al (2017) Exoplanet biosignatures: observational prospects. Astrobiology (submitted)Google Scholar
  24. Gaillard F et al (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232ADSCrossRefGoogle Scholar
  25. Gebauer S et al (2017) Evolution of earth-like extrasolar planetary atmospheres. Astrobiology 17:27–54ADSCrossRefGoogle Scholar
  26. Godolt M et al (2015) 3D climate modeling of earth-like extrasolar planets orbiting different types of host stars. PSS 111:62–76CrossRefGoogle Scholar
  27. Grenfell JL (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88ADSCrossRefGoogle Scholar
  28. Grenfell JL et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. PSS 55:661–671CrossRefGoogle Scholar
  29. Grenfell JL et al (2012) Response of atmospheric biomarkers to NOx-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars. Astrobiology 12:1109–1122ADSCrossRefGoogle Scholar
  30. Grenfell JL et al (2014) Sensitivity of biosignatures on earth-like planets orbiting in the habitable zone of cool M-dwarf stars to varying stellar UV radiation and surface biomass emissions. PSS 98:66–76CrossRefGoogle Scholar
  31. Guzmán-Marmolejo A et al (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13:550–559ADSCrossRefGoogle Scholar
  32. Haagen-Smit AJ (1952) Chem. And phys. Of Los Angeles smog. Indust Eng Chem 44:1342–1346CrossRefGoogle Scholar
  33. Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17:337–348CrossRefGoogle Scholar
  34. Hedelt P et al (2013) Spectral features of earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. A&A 553:A9ADSCrossRefGoogle Scholar
  35. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University USA, PrincetonGoogle Scholar
  36. Holland HD (2002) Volcanic gases, black smokers and the great oxidation event. Geochim Cos Act 66:3811–3826ADSCrossRefGoogle Scholar
  37. Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc A.  https://doi.org/10.1098/rstb.2006.1838
  38. International Panel on Climate Change (IPCC) Climate Change (2007) In: Solomon S et al (eds) The physical basis. IPCC, GenevaGoogle Scholar
  39. Kaiser J, Röckman T (2005) Absence of isotope exchange in the reaction of N2O + O(1D) and the global 17O budget of nitrous oxide. Geophys Res Lett 32:LI15808ADSCrossRefGoogle Scholar
  40. Kaltenegger L et al (2007) Spectral evolution of an earth-like planet. ApJ 658:1CrossRefGoogle Scholar
  41. Kasting JF, Catling DC (2003) Evolution of a habitable planet. Ann Rev Astron Astrophys 41:429–463ADSCrossRefGoogle Scholar
  42. Kawahara H et al (2012) Can ground-based telescopes detect the 1.27 micron absorption feature as a biomarker in exoplanets? ApJ 758:1CrossRefGoogle Scholar
  43. Keppler F et al (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411ADSCrossRefGoogle Scholar
  44. Kiang NY et al (2007) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274ADSCrossRefGoogle Scholar
  45. Kitzmann D et al (2011) Clouds in the atmospheres of extrasolar planets. A&A 531:A62ADSCrossRefGoogle Scholar
  46. Knak Jensen SJ et al (2016) A sink for methane on Mars? The answer is blowing in the wind. Icarus 236:24–27ADSCrossRefGoogle Scholar
  47. Korpela EJ et al (2015) Modeling indications of technology in planetary transit light curves – dark-side illumination. ApJ 809:2CrossRefGoogle Scholar
  48. Krasnopolsky VA et al (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547ADSCrossRefGoogle Scholar
  49. Krissansen-Totton J et al (2016) On detecting biosignatures from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67ADSCrossRefGoogle Scholar
  50. Kump L (2008) The rise of atmospheric oxygen. Nature 451:277–278ADSCrossRefGoogle Scholar
  51. Kump LR et al (2011) Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334:1694–1696ADSCrossRefGoogle Scholar
  52. Lederberg J (1965) Signs of life. Nature 207:9–13ADSCrossRefGoogle Scholar
  53. Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723ADSCrossRefGoogle Scholar
  54. Lenton TM, Watson AJ (2000) Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob Biogeo Cyc 14:249–268ADSCrossRefGoogle Scholar
  55. Levine GS et al (1979) N2O and CO production by electric discharge: atmospheric implications. Geophys Re Lett.  https://doi.org/10.1029/GL006i007p00557
  56. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570ADSCrossRefGoogle Scholar
  57. Margulis LM, Lovelock JE (1974) Biological modulation of the Earth’s atmosphere. Icarus 21:471–489ADSCrossRefGoogle Scholar
  58. McCollom TM (2016) Abiotic methane formation during experimental serpentinization of olivine. PNAS 113:13,965–13,970CrossRefGoogle Scholar
  59. Meadows V et al (2017a) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052ADSCrossRefGoogle Scholar
  60. Meadows V et al (2017b) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology (submitted)Google Scholar
  61. Misra A et al (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86ADSCrossRefGoogle Scholar
  62. Montmessin F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85ADSCrossRefGoogle Scholar
  63. Morrison D, Owen T (2003) The planetary system, 3rd edn. ReadingGoogle Scholar
  64. Muller C (2013) N2O as a biomarker: from the earth and solar system to exoplanets. Astrophys Spa Sci Proc 35:99–106CrossRefGoogle Scholar
  65. Mumma MJ et al (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1044ADSCrossRefGoogle Scholar
  66. Mvondo NM et al (2010) The production of nitrogen oxides by lightning and coronal discharges in simulated early earth, venus and mars environments. Adv Spa Res 27:217–223CrossRefGoogle Scholar
  67. Noack L, Breuer D (2014) Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. PSS 98:41–49CrossRefGoogle Scholar
  68. O’Malley-James JT et al (2014) Swansong biospheres II: the final signs of life on terrestrial exoplanets near the end of their habitable lifetimes. Int J Astrobiol 13:229–243CrossRefGoogle Scholar
  69. Perrier S et al (2006) Global distribution of total ozone on Mars from SPCAM/MEX UV measurements. J Geophys Res 111:E9CrossRefGoogle Scholar
  70. Pilcher CB (2004) Astrobiol. Biosignatures Early Earths 3:471–486Google Scholar
  71. Rauer H et al (2011) Potential biosignatures in super-earth atmospheres I. Spectral appearance of super-earths around M dwarfs. A&A 529:A8ADSCrossRefGoogle Scholar
  72. Raymond SN et al (2007) High-resolution simulations of the final assembly of earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84ADSCrossRefGoogle Scholar
  73. Rein et al (2014) Some inconvenient truths about biosignatures involving two chemical species on earth-like exoplanets. PNAS 111:6871–6875ADSCrossRefGoogle Scholar
  74. Reinhard et al (2017) False negatives for remote life detection on ocean-bearing planets: lessons from the early earth. Astrobiology 17:287–297. (accepted)ADSCrossRefGoogle Scholar
  75. Ricker GR et al (2014) Transiting exoplanet survey satellite. Astron Telesc Instrum Syst 1:014003ADSCrossRefGoogle Scholar
  76. Roberson AL et al (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9:313–320CrossRefGoogle Scholar
  77. Robinson TD et al (2011) Modeling the infrared spectrum of the earth-moon system. ApJ 741:1–9ADSCrossRefGoogle Scholar
  78. Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an earth-like exoplanet. ApJ 781:1CrossRefGoogle Scholar
  79. Rugheimer S et al (2015) Effect of UV on the spectral fingerprints of earth-like planets orbiting M-stars. Astrobiology 809:1–16Google Scholar
  80. Sagan C et al (1994) A search for life on earth from the Galileo spacecraft. Nature 365:375–377Google Scholar
  81. Samarkin VA et al (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geophys 3:341–344Google Scholar
  82. Schwieterman E et al (2017) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology (submitted)Google Scholar
  83. Seager S et al (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390ADSCrossRefGoogle Scholar
  84. Seager S et al (2013) Biosignature gases in H2-dominated atmospheres on rocky planets. ApJ 777:2ADSCrossRefGoogle Scholar
  85. Seager S et al (2016) Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16:465–485ADSCrossRefGoogle Scholar
  86. Segura A et al (2003) Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars. Astrobiology 3:689–708ADSCrossRefGoogle Scholar
  87. Segura A et al (2005) Biosignatures from earth-like planets around M-stars. Astrobiology 5:706–725ADSCrossRefGoogle Scholar
  88. Segura A et al (2010) The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M-dwarf. Astrobiology 10:751–771ADSCrossRefGoogle Scholar
  89. Selsis F et al (2002) Signature of life on exoplanets: can Darwin produce false positive detections? A&A 388:985–1003ADSCrossRefGoogle Scholar
  90. Simoncini E et al (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in Earth’s atmosphere. Earth Sys Dyn 4:317–331ADSCrossRefGoogle Scholar
  91. Slanger TG, Copeland RA (2003) Energetic oxygen in the upper atmosphere and the laboratory. Chem Rev 103:4731–4766CrossRefGoogle Scholar
  92. Snellen I (2014) High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-earths. Phil Trans A 372Google Scholar
  93. Stolarski RJ, Cicerone RS (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615CrossRefGoogle Scholar
  94. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26ADSCrossRefGoogle Scholar
  95. Tabataba-Vakili F et al (2016) Atmospheric effects of stellar cosmic rays on earth-like exoplanets orbiting M-dwarfs. A&A 585:A96ADSCrossRefGoogle Scholar
  96. van Capellan P, Ingall ED (1996) Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271:493ADSCrossRefGoogle Scholar
  97. von Paris P et al (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: Gl581d as a model case study. A&A 534:A26ADSCrossRefGoogle Scholar
  98. von Paris P et al (2013) Characterization of potentially habitable planets: retrieval of atmosphericGoogle Scholar
  99. Walker SI et al (2017) Exoplanet biosignatures: future directions. Astrobiology (submitted)Google Scholar
  100. Wayne RP (1993) Chemistry of atmospheres, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  101. Webster CR et al (2015) Mars methane detection and variability at gale crater. Science 412:415ADSCrossRefGoogle Scholar
  102. Werner M et al (2016) Extension of ATLAST/LUVOIR’s capabilities to 5 microns or beyond. SPIE 041205Google Scholar
  103. World Meteorological Organization (WMO) (1995) Scientific assessment of ozone depletion: 1994. Report Number 37. WMO, GenevaGoogle Scholar
  104. Yan F et al (2015) High-resolution transmission spectrum of the Earth’s atmosphere-seeing earth as an exoplanet using a lunar eclipse. Int J Astrobiol 14:255–266CrossRefGoogle Scholar
  105. Yang J et al (2013) Stabilising cloud feedback dramatically expands the habitable zone of tidally-locked planets. ApJL 771:2CrossRefGoogle Scholar
  106. Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, OxfordGoogle Scholar
  107. Zahnle K et al (2011) Is there methane on Mars? Icarus 212:493–503ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Extrasolar Planets and Atmospheres (EPA)German Aerospace Centre (DLR)Berlin, AdlershofGermany

Section editors and affiliations

  • Victoria Meadows
    • 1
  • Rory Barnes
    • 2
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA
  2. 2.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations